Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
angle wanted, right ABC, AM=CB , CN=MB
parmenides51   1
N 8 minutes ago by Mathzeus1024
Source: 2022 European Math Tournament - Senior First + Grand League - Math Battle 1.3
In a right-angled triangle $ABC$, points $M$ and $N$ are taken on the legs $AB$ and $BC$, respectively, so that $AM=CB$ and $CN=MB$. Find the acute angle between line segments $AN$ and $CM$.
1 reply
parmenides51
Dec 19, 2022
Mathzeus1024
8 minutes ago
Some interestingly hard inequality
ItzsleepyXD   1
N 11 minutes ago by ItzsleepyXD
Source: Own , modified
Let $ a,b,c \in \mathbb{R^+}$. Find the max $t \in \mathbb{R^+}$ that $$ \frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a} + \frac{1}{c^3(a+b)} \geqslant \frac{4}{9}( \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b})^3 + t ( \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} -\frac{3}{2})$$for all $a^2+b^2+c^2 = 3$.

more
1 reply
ItzsleepyXD
Mar 17, 2025
ItzsleepyXD
11 minutes ago
Inspired by Czech-Polish-Slovak 2017
sqing   2
N 22 minutes ago by lbh_qys
Let $x, y$ be real numbers. Prove that
$$\frac{(xy+1)(x + 2y)}{(x^2 + 1)(2y^2 + 1)} \leq \frac{3}{2\sqrt 2}$$$$\frac{(xy+1)(x +3y)}{(x^2 + 1)(3y^2 + 1)} \leq \frac{2}{ \sqrt 3}$$$$\frac{(xy - 1)(x + 2y)}{(x^2 + 1)(2y^2 + 1)} \leq \frac{1}{\sqrt 2}$$$$\frac{(xy - 1)(x + 3y)}{(x^2 + 1)(3y^2 + 1)} \leq \frac{\sqrt 3}{2}$$
2 replies
sqing
an hour ago
lbh_qys
22 minutes ago
Inequality by Po-Ru Loh
v_Enhance   55
N 27 minutes ago by ethan2011
Source: ELMO 2003 Problem 4
Let $x,y,z \ge 1$ be real numbers such that \[ \frac{1}{x^2-1} + \frac{1}{y^2-1} + \frac{1}{z^2-1} = 1. \] Prove that \[ \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} \le 1. \]
55 replies
v_Enhance
Dec 29, 2012
ethan2011
27 minutes ago
Serbian selection contest for the BMO 2025 - P4
OgnjenTesic   1
N 35 minutes ago by WallyWalrus
Let $a_1, a_2, \ldots, a_8$ be real numbers. Prove that
$$\sum_{i=1}^{8} \left( a_i^2 + a_i a_{i+2} \right) \geq \sum_{i=1}^{8} \left( a_i a_{i+1} + a_i a_{i+3} \right),$$where the indices are taken modulo 8, i.e., $a_9 = a_1$, $a_{10} = a_2$, and $a_{11} = a_3$. In which cases does equality hold?

Proposed by Vukašin Pantelić and Andrija Živadinović
1 reply
OgnjenTesic
Apr 7, 2025
WallyWalrus
35 minutes ago
Projective training on circumscribds
Assassino9931   1
N 36 minutes ago by VicKmath7
Source: Bulgaria Balkan MO TST 2025
Let $ABCD$ be a circumscribed quadrilateral with incircle $k$ and no two opposite angles equal. Let $P$ be an arbitrary point on the diagonal $BD$, which is inside $k$. The segments $AP$ and $CP$ intersect $k$ at $K$ and $L$. The tangents to $k$ at $K$ and $L$ intersect at $S$. Prove that $S$ lies on the line $BD$.
1 reply
Assassino9931
Yesterday at 10:17 PM
VicKmath7
36 minutes ago
Orthocenter config once again
Assassino9931   7
N 37 minutes ago by VicKmath7
Source: Bulgaria National Olympiad 2025, Day 2, Problem 4
Let \( ABC \) be an acute triangle with \( AB < AC \), midpoint $M$ of side $BC$, altitude \( AD \) (\( D \in BC \)), and orthocenter \( H \). A circle passes through points \( B \) and \( D \), is tangent to line \( AB \), and intersects the circumcircle of triangle \( ABC \) at a second point \( Q \). The circumcircle of triangle \( QDH \) intersects line \( BC \) at a second point \( P \). Prove that the lines \( MH \) and \( AP \) are perpendicular.
7 replies
Assassino9931
Tuesday at 1:53 PM
VicKmath7
37 minutes ago
Angle EBA is equal to Angle DCB
WakeUp   6
N an hour ago by Nari_Tom
Source: Baltic Way 2011
Let $ABCD$ be a convex quadrilateral such that $\angle ADB=\angle BDC$. Suppose that a point $E$ on the side $AD$ satisfies the equality
\[AE\cdot ED + BE^2=CD\cdot AE.\]
Show that $\angle EBA=\angle DCB$.
6 replies
WakeUp
Nov 6, 2011
Nari_Tom
an hour ago
if xy+xz+yz+2xyz+1 prove that...
behdad.math.math   5
N an hour ago by Sadigly
if xy+xz+yz+2xyz+1 prove that x+y+z>=3/2
5 replies
behdad.math.math
Sep 25, 2008
Sadigly
an hour ago
no. of divisors of the form
S_14159   0
an hour ago
Source: idk
If $P=2^5 \cdot 3^6 \cdot 5^4 \cdot 7^3$ then number of positive integral divisors of $``P"$

(A) of form $(2 n+3), n \in \mathbb{N}$, is $=138$
(B) of form $(4 n+1), n \in \mathbb{W}$, is $=70$
(C) of form $(6 n+3), n \in \mathbb{W}$, is $=120$
(D) of form $(4 n+3), n \in \mathbb{W}$, is $=56$

(more than one option may be correct)
0 replies
S_14159
an hour ago
0 replies
max n with n times n square are black
NicoN9   0
an hour ago
Source: Japan Junior MO Preliminary 2022 P5
Find the maximum positive integer $n$ such that for $45\times 45$ grid, no matter how you paint $2022$ unit squares black, there exists $n\times n$ square with all unit square painted black.
0 replies
NicoN9
an hour ago
0 replies
BDE tangent to EF
NicoN9   0
an hour ago
Source: Japan Junior MO Preliminary 2022 P4
Let $ABC$ be a triangle with $AB=5$, $BC=7$, $CA=6$. Let $D, E$, and $F$ be points lying on sides $BC, CA, AB$, respectively. Given that $A, B, D, E$, and $B, C, E, F$ are cyclic respectively, and the circumcircle of $BDE$ are tangent to line $EF$, find the length of segment $AE$.
0 replies
NicoN9
an hour ago
0 replies
Maximum number of m-tastic numbers
Tsukuyomi   30
N an hour ago by cursed_tangent1434
Source: IMO Shortlist 2017 N4
Call a rational number short if it has finitely many digits in its decimal expansion. For a positive integer $m$, we say that a positive integer $t$ is $m-$tastic if there exists a number $c\in \{1,2,3,\ldots ,2017\}$ such that $\dfrac{10^t-1}{c\cdot m}$ is short, and such that $\dfrac{10^k-1}{c\cdot m}$ is not short for any $1\le k<t$. Let $S(m)$ be the set of $m-$tastic numbers. Consider $S(m)$ for $m=1,2,\ldots{}.$ What is the maximum number of elements in $S(m)$?
30 replies
Tsukuyomi
Jul 10, 2018
cursed_tangent1434
an hour ago
interesting ineq
nikiiiita   6
N 2 hours ago by KhuongTrang
Source: Own
Given $a,b,c$ are positive real numbers satisfied $a^3+b^3+c^3=3$. Prove that:
$$\sqrt{2ab+5c^{2}+2a}+\sqrt{2bc+5a^{2}+2b}+\sqrt{2ac+5b^{2}+2c}\le3\sqrt{3\left(a+b+c\right)}$$
6 replies
nikiiiita
Jan 29, 2025
KhuongTrang
2 hours ago
IMO Shortlist 2010 - Problem G6
Amir Hossein   11
N Dec 25, 2024 by Autistic_Turk
The vertices $X, Y , Z$ of an equilateral triangle $XYZ$ lie respectively on the sides $BC, CA, AB$ of an acute-angled triangle $ABC.$ Prove that the incenter of triangle $ABC$ lies inside triangle $XYZ.$

Proposed by Nikolay Beluhov, Bulgaria
11 replies
Amir Hossein
Jul 17, 2011
Autistic_Turk
Dec 25, 2024
IMO Shortlist 2010 - Problem G6
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Amir Hossein
5452 posts
#1 • 5 Y
Y by TFIRSTMGMEDALIST, nobodyknowswhoIam, Adventure10, Autistic_Turk, and 1 other user
The vertices $X, Y , Z$ of an equilateral triangle $XYZ$ lie respectively on the sides $BC, CA, AB$ of an acute-angled triangle $ABC.$ Prove that the incenter of triangle $ABC$ lies inside triangle $XYZ.$

Proposed by Nikolay Beluhov, Bulgaria
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Vinoth
33 posts
#2 • 5 Y
Y by Amir Hossein, TFIRSTMGMEDALIST, Adventure10, Mango247, Autistic_Turk
I can't think of a Euclidean way of doing it, but I can outline a way of killing it quickly with co-ordinates:

Let $Z$ be the origin, let $XY=YZ=XZ=1$, say $BC$ is the $x$-axis, say $\angle XZB = \theta$; then one can work out the equation of $XZ$ in terms of $\theta$. It clearly suffices to prove that the incentre $I$ and $Y$ lie on the same side of the line $XZ$. Then calculate the gradient of $XB$, which gives the gradient of $IB$ (using say, the $\tan 2\theta$ formula). Similarly calculate the gradient of $YC$, which gives the gradient of $IC$. Now we know the equations of $IB$ and $IC$, so solve for the co-ordinates of $I$. Finally, check that $I$ and $Y$ lie on the same side of $XZ$.

I can post the calculations if anyone is interested..
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KittyOK
349 posts
#3 • 5 Y
Y by Amir Hossein, oty, Adventure10, Mango247, and 1 other user
Can you post the calculations please? ( In your original post, I think there must be some typo: you say $Z$ the origin and $BC$ x-axis, but $BC$ does not pass through $Z$. )
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vanu1996
607 posts
#4 • 2 Y
Y by Ashutoshmaths, Adventure10
Due to miquel theorem we have the circumcircles of $BXZ,CXY,AZY$ passes through a common point namely $M$,notice that if the bisector of $B$ meet the circumcircle of $BXZ$ at $F$ then $FZ=FX$,so $F,Y$ lies perpendicular bisector of $ZX$,but $B$ is acute so $\angle ZFX>60$,similar analysis with other two triangles, then we get $I$ must be inside the triangle $XYZ$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
estoyanovvd
114 posts
#5 • 2 Y
Y by Adventure10, Mango247
vanu1996 wrote:
... so $\angle ZFX>60$,similar analysis with other two triangles, then we get $I$ must be inside the triangle $XYZ$.
Why?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
leader
339 posts
#6 • 2 Y
Y by Adventure10, Mango247
Trigonometry Another not so creative approach but can be done withouth much problems. I will only explain what are the cases to be dealt with and what to use.
Denote $d(P,l)$ distance of $P$ from line $l$
Let $XY=YZ=ZX=a$
Clearly if the bisector of $\angle A$ cuts $ZY$ at $D$ we need $d(D,BC)>d(D,AB)$ now we fix $X,Y,Z,A$ and find the maximal $k$ for which $d(D,BC)>k$ and prove that $k\ge d(D,AB)=d(D,AC)$. To do this try to minimize the angle $\angle (DX,BC)$ from both sides. When minimizing it to one side say $\angle BXD$ consider the cases $\angle BZX\ge 90$(this one is easy), $\angle BZX<90$ and $\angle AZD\ge 90$(also not hard) and when both $\angle BZX,\angle AZD$ are acute.
For the last case you will need to express $k,d(D,AB)$ in termes of $90-\angle DZA=x$ and $a$ and $r=DZ$ now you get some inequality that you need for $tg x$ but for this you will need that $sin \angle AZD\le sin \angle AZD/sin \angle AYD=r/(a-r)$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathcool2009
352 posts
#7 • 2 Y
Y by Quidditch, Adventure10
Warning: This is a terrible solution.

Abuse of Notation. The term ``segment'' will always denote a line segment (as opposed to a circular segment).

Note. Given a line $\ell$, define its argument to be the angle between $\ell$ and the $x$-axis, starting from the $x$-axis and going counterclockwise. Arguments are always in the range $[0, 180^{\circ})$.

Let $I$ be the incenter and let $\omega$ be the incircle of triangle $ABC$. We will use the points $X,Y,Z$ and circle $\omega$ to try to locate $A,B,C$.

Claim 1. Note that $X,Y,Z$ each lie on the boundary of triangle $ABC$. Since $\omega$ lies within triangle $ABC$, we have that $X,Y,Z$ lie outside or on the boundary of $\omega$. Furthermore, if $\omega$ intersects line $XY$, all of the intersection points must lie within segment $XY$. Otherwise, part of $\omega$ would lie outside triangle $ABC$, contradiction.

Claim 2. Let $D,E,F$ be the tangency points of $\omega$ with sides $BC,CA,AB$ respectively. Suppose none of the lines $XY,YZ,ZX$ intersect $\omega$. If $X$ lies on segment $CD$, then it is impossible to find $Z$ on segment $AB$ such that line $XZ$ does not intersect $\omega$. Similarly, if $X$ lies on segment $BD$, then it is impossible to find $Y$ on segment $AC$ such that line $XY$ does not intersect $\omega$. Thus we have a contradiction. We conclude that at least one of the lines $XY, YZ, ZX$ must intersect $\omega$.

We return to the main problem. Assume for the sake of contradiction that $I$ lies outside triangle $XYZ$; our goal is now to show that either $ABC$ cannot be acute, $\omega$ cannot be the incircle of triangle $ABC$, or $X,Y,Z$ cannot be contained within segments $BC,CA,AB$ respectively.

We can assume without loss of generality that $I, X$ are on opposite sides of line $YZ$. Furthermore, we can assume that line $YZ$ is ``horizontal'' and $X,I$ are ``below'' and ``above'' line $YZ$ respectively. (See Figure 1.)

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -12.928819800000007, xmax = 39.76706740000004, ymin = -19.4182868, ymax = 7.799332199999999;  /* image dimensions */

 /* draw figures */
draw(circle((9.92,-1.78), 5.360485052679468)); 
draw((4.883420800000009,-6.0188436)--(15.061844000000018,-6.244315)); 
draw((15.061844000000018,-6.244315)--(9.777368439773172,-14.946352361668911)); 
draw((9.777368439773172,-14.946352361668911)--(4.883420800000009,-6.0188436)); 
 /* dots and labels */
dot((9.92,-1.78),dotstyle); 
label("$I$", (10.037052800000014,-1.4449952), NE * labelscalefactor); 
dot((4.883420800000009,-6.0188436),dotstyle); 
label("$Y$", (5.012261600000009,-5.6967416), NE * labelscalefactor); 
dot((15.061844000000018,-6.244315),dotstyle); 
label("$Z$", (15.19068480000002,-5.922213), NE * labelscalefactor); 
dot((9.777368439773172,-14.946352361668911),linewidth(3.pt) + dotstyle); 
label("$X$", (9.908212000000013,-14.7478078), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Figure 1. $I,X$ are on opposite sides of line $YZ$.

We see that if segment $YZ$ does not intersect $\omega$, we must have line $YZ$ does not intersect $\omega$, so line $YZ$ must be ``below'' $\omega$. This means that segments $ZX,XY$ must not intersect $\omega$, contradicting Claim 2. Thus we must have that segment $YZ$ intersects $\omega$.

We see that there are two tangents from $X$ to $\omega$; line $BC$ must be one of these tangents. Let $X_1, X_2$ be the intersections of the two tangents with $\omega$.

Case 1. $\omega$ does not intersect lines $XY, XZ$.

We have that $\omega$ is contained within the smaller region $\mathcal{R}$ of the plane bounded by rays $XY, XZ$. Thus the rays $XX_1, XX_2$ must also be contained within $\mathcal{R}$; thus line $BC$ intersects $\mathcal{R}$. However, line $BC$ does not intersect triangle $XYZ$, contradiction.

Case 2. $\omega$ intersects line $XY$ but does not intersect line $XZ$. (See Figure 2.)

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -12.928819800000007, xmax = 39.76706740000004, ymin = -19.4182868, ymax = 7.799332199999999;  /* image dimensions */

 /* draw figures */
draw(circle((9.92,-1.78), 5.360485052679468)); 
draw((4.207006600000009,-2.1536196)--(16.70456420000002,-2.1214094)); 
draw((16.70456420000002,-2.1214094)--(10.48368025146099,-12.960716866859293)); 
draw((10.48368025146099,-12.960716866859293)--(4.207006600000009,-2.1536196)); 
 /* dots and labels */
dot((9.92,-1.78),dotstyle); 
label("$I$", (10.037052800000014,-1.4449952), NE * labelscalefactor); 
dot((4.207006600000009,-2.1536196),dotstyle); 
label("$Y$", (4.3358474000000085,-1.8315176), NE * labelscalefactor); 
dot((16.70456420000002,-2.1214094),dotstyle); 
label("$Z$", (16.83340500000002,-1.7993074), NE * labelscalefactor); 
dot((10.48368025146099,-12.960716866859293),linewidth(3.pt) + dotstyle); 
label("$X$", (10.616836400000015,-12.7829856), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Figure 2. $\omega$ intersects line $XY$ but does not intersect line $XZ$.

Let $P,Q$ be the intersection points of line $XY$ with $\omega$. (We could possibly have $P = Q$.)

Let $t_y, t_z$ be the rays from $X$ tangent to $\omega$ such that $t_y$ is outside $\mathcal{R}$ and $t_z$ is inside $\mathcal{R}$. By the above reasoning, we cannot have $t_z$ coincide with line $BC$, so we must have that $t_y$ coincides with line $BC$.

Now one of the tangent lines from $Y$ to $\omega$ must be line $AC$; let this tangent line be $u$. Then the intersection of $u$ and $t_y$ must be point $C$, and we can determine $\angle BCA$ by looking at the angle between $u$ and $t_y$.

Sub-case 2.1. $u$, $t_y$ are tangent to the same arc $\overarc{PQ}$ of $\omega$.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -0.7191574814425151, xmax = 24.134336132381687, ymin = -12.285790672877546, ymax = 0.6819027906836906;  /* image dimensions */

 /* draw figures */
draw(circle((9.92,-1.78), 5.360485052679468)); 
draw((4.434862052742311,-1.9326727164537993)--(16.185425538842992,-1.947699012471831)); 
draw((16.185425538842992,-1.947699012471831)--(10.297130641716253,-12.11647235220784)); 
draw((10.297130641716253,-12.11647235220784)--(4.434862052742311,-1.9326727164537993)); 
draw((xmin, -1.5220791046650244*xmin + 3.5565750355544212)--(xmax, -1.5220791046650244*xmax + 3.5565750355544212)); /* line */
draw((10.297130641716253,-12.11647235220784)--(14.602673637027614,-4.389093254195133)); 
draw((xmin, -4.030405913580408*xmin + 15.941621526832158)--(xmax, -4.030405913580408*xmax + 15.941621526832158)); /* line */
 /* dots and labels */
dot((9.92,-1.78),dotstyle); 
label("$I$", (9.979565283395956,-1.6321467960931695), NE * labelscalefactor); 
dot((4.434862052742311,-1.9326727164537993),dotstyle); 
label("$Y$", (4.494967236814436,-1.782409756273485), NW * labelscalefactor); 
dot((16.185425538842992,-1.947699012471831),dotstyle); 
label("$Z$", (16.245530722915117,-1.7974360522915165), NE * labelscalefactor); 
dot((10.297130641716253,-12.11647235220784),linewidth(3.pt) + dotstyle); 
label("$X$", (10.355222683846746,-12.030343640571008), NE * labelscalefactor); 
label("$t_y$", (2.5265224584523023,-0.09946460225395042), NE * labelscalefactor); 
label("$u$", (4.089257244327585,-0.11449089827198197), NE * labelscalefactor); 
dot((4.937572906073237,-3.9588015125398126),linewidth(3.pt) + dotstyle); 
label("$C$", (4.990835005409479,-3.871064902779872), SW * labelscalefactor); 
dot((6.89408181391885,-6.204773342346854),linewidth(3.pt) + dotstyle); 
label("$P$", (6.959279783771613,-6.109983009466574), NE * labelscalefactor); 
dot((4.574048444430357,-2.1744641498317665),linewidth(3.pt) + dotstyle); 
label("$Q$", (4.630203900976721,-2.0829356766341163), SE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Note that the horizontal and vertical lines through $C$ are completely contained within angle $BCA$. This is a contradiction.

Sub-case 2.2. $u$, $t_y$ are tangent to different arcs $\overarc{PQ}$ of $\omega$.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -0.7191574814425151, xmax = 24.134336132381687, ymin = -12.285790672877546, ymax = 0.6819027906836906;  /* image dimensions */

 /* draw figures */
draw(circle((9.92,-1.78), 5.360485052679468)); 
draw((4.434862052742311,-1.9326727164537993)--(16.185425538842992,-1.947699012471831)); 
draw((16.185425538842992,-1.947699012471831)--(10.297130641716253,-12.11647235220784)); 
draw((10.297130641716253,-12.11647235220784)--(4.434862052742311,-1.9326727164537993)); 
draw((xmin, -1.5220791046650244*xmin + 3.5565750355544212)--(xmax, -1.5220791046650244*xmax + 3.5565750355544212)); /* line */
draw((10.297130641716253,-12.11647235220784)--(14.602673637027614,-4.389093254195133)); 
draw((xmin, 5.269265571976335*xmin-25.30113864743315)--(xmax, 5.269265571976335*xmax-25.30113864743315)); /* line */
 /* dots and labels */
dot((9.92,-1.78),dotstyle); 
label("$I$", (9.979565283395956,-1.6321467960931695), NE * labelscalefactor); 
dot((4.434862052742311,-1.9326727164537993),dotstyle); 
label("$Y$", (4.494967236814436,-1.782409756273485), NE * labelscalefactor); 
dot((16.185425538842992,-1.947699012471831),dotstyle); 
label("$Z$", (16.245530722915117,-1.7974360522915165), NE * labelscalefactor); 
dot((10.297130641716253,-12.11647235220784),linewidth(3.pt) + dotstyle); 
label("$X$", (10.355222683846746,-12.030343640571008), NE * labelscalefactor); 
label("$t_y$", (2.5265224584523023,-0.09946460225395042), NE * labelscalefactor); 
label("$u$", (4.570098716904595,0.005719469872270494), NE * labelscalefactor); 
dot((6.89408181391885,-6.204773342346854),linewidth(3.pt) + dotstyle); 
label("$P$", (6.959279783771613,-6.109983009466574), NE * labelscalefactor); 
dot((4.574048444430357,-2.1744641498317665),linewidth(3.pt) + dotstyle); 
label("$Q$", (4.630203900976721,-2.0829356766341163), SE * labelscalefactor); 
dot((4.2491899700280085,-2.9110282295774117),linewidth(3.pt) + dotstyle); 
label("$C$", (4.314651684598058,-2.8192241815176624), SW * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

We can do a few things to decrease $\angle BCA$. We can dilate triangle $XYZ$ with respect to $X$ until $Y,Z,I$ are collinear; this will decrease $\angle BCA$. Afterwards, we can shrink triangle $XYZ$ with respect to $Y$ until $Z$ lies on $\omega$. Now we wish to show that in the new diagram, $\angle BCA \ge 90^{\circ}$; this will give us the desired contradiction.

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -0.7191574814425151, xmax = 24.134336132381687, ymin = -12.285790672877546, ymax = 0.6819027906836906;  /* image dimensions */

 /* draw figures */
draw(circle((9.92,-1.78), 5.360485052679468)); 
draw((4.194441316453806,-1.7974360522915165)--(15.283847777761098,-1.782409756273485)); 
draw((15.283847777761098,-1.782409756273485)--(9.752157701183853,-11.393630612665907)); 
draw((9.752157701183853,-11.393630612665907)--(4.194441316453806,-1.7974360522915165)); 
draw((xmin, -1.5467491152852606*xmin + 3.690510683762557)--(xmax, -1.5467491152852606*xmax + 3.690510683762557)); /* line */
draw((xmin, 2.689327019123712*xmin-13.077660414759567)--(xmax, 2.689327019123712*xmax-13.077660414759567)); /* line */
 /* dots and labels */
dot((9.92,-1.78),dotstyle); 
label("$I$", (9.979565283395956,-1.6321467960931695), NE * labelscalefactor); 
dot((4.194441316453806,-1.7974360522915165),dotstyle); 
label("$Y$", (4.254546500525932,-1.6471730921112009), NW * labelscalefactor); 
dot((15.283847777761098,-1.782409756273485),dotstyle); 
label("$Z$", (15.343952961833224,-1.6321467960931695), NE * labelscalefactor); 
dot((9.752157701183853,-11.393630612665907),linewidth(3.pt) + dotstyle); 
label("$X$", (9.814276027197609,-11.309081431705494), NE * labelscalefactor); 
label("$t_y$", (2.5866276425244283,-0.09946460225395042), NE * labelscalefactor); 
label("$u$", (4.585125012922626,-0.08443830623591886), NE * labelscalefactor); 
dot((6.639805421625977,-6.01970795315027),linewidth(3.pt) + dotstyle); 
label("$P$", (6.703832751465076,-5.929667457250195), NE * labelscalefactor); 
dot((4.610181019221642,-2.5152702845660646),linewidth(3.pt) + dotstyle); 
label("$Q$", (4.675282789030816,-2.428540485048842), E * labelscalefactor); 
dot((3.9584206153229724,-2.4321729009151873),linewidth(3.pt) + dotstyle); 
label("$C$", (4.014125764237427,-2.3383827089406526), W * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

We will use Cartesian coordinates. Assume that the radius of $\omega$ equals 1. Let $I = (0,0), Z = (1,0), Y = (-x, 0)$ for some $x \ge 1$. Since $XY$ needs to intersect $\omega$, we have \[1 \le x \le \frac{2}{\sqrt{3}}.\]We have $X = (\frac{-x+1}{2}, \frac{-x-1}{2}\sqrt{3})$. Let $\theta$ be the argument of $u$ and let $\phi_1$ be the argument of line $XI$. Let $\phi_2$ be the angle between $t_y$ and ray $XI$. In particular, $\phi_1 + \phi_2$ is the argument of $t_y$. It is clear that $\angle BCA = 180^{\circ} - \phi_1 - \phi_2 + \theta$. We wish to show that $\angle BCA \ge 90^{\circ}$; this is equivalent to showing that $\phi_1 + \phi_2 - \theta \le 90^{\circ}$, or \[ 90^{\circ} + \theta \ge \phi_1 + \phi_2. \]
Note that $\tan \theta = \frac{1}{\sqrt{x^2 - 1}}$, so \[ \tan (90^{\circ} + \theta) = -\sqrt{x^2 - 1}.\]We have \[ \tan \phi_1 = \frac{(x+1)\sqrt{3}}{x-1}. \]Letting $d = XI$, we see that $\tan \phi_2 = \frac{1}{\sqrt{d^2 - 1}}$, so \[ \tan \phi_2 = \frac{1}{\sqrt{x^2+x}}. \]This yields \[ \tan (\phi_1 + \phi_2) = \frac{(x+1)\sqrt{3}\sqrt{x} + \frac{x-1}{\sqrt{x+1}}}{(x-1)\sqrt{x} - \sqrt{x+1}\sqrt{3}}. \]
I claim that the denominator $(x-1)\sqrt{x} - \sqrt{x+1}\sqrt{3}$ is always negative. This is equivalent to showing that $(x-1)^2x < 3(x+1)$ holds for all $x$ in our interval. Expanding, we get \[ f(x) =  x^3 - 2x^2 - 2x - 3 < 0. \]To prove this, we note that $f(1) = -6 < 0$. Furthermore, \[f'(x) = 3x^2 - 4x - 2 = 3(x-r_1)(x-r_2) \]where \[r_1 = \frac{2-\sqrt{10}}{3}, r_2 = \frac{2+\sqrt{10}}{3}. \]Note that $r_1 < 0$ and that $r_2 > \frac{5}{3} > \frac{2}{\sqrt{3}}$, so $f'(x) < 0$ for $x$ in our interval. This means that \[f(x) < f(1) < 0 \]for $x$ in our interval.

Since $90^{\circ} + \theta, \phi_1 + \phi_2 $ are both in the interval $(90^{\circ}, 180^{\circ}]$, $90^{\circ} + \theta \ge \phi_1 + \phi_2$ is equivalent to \[ \tan (90^{\circ} + \theta) \ge \tan (\phi_1 + \phi_2). \]This in turn is equivalent to \[ -\sqrt{x^2 - 1} \ge \frac{(x+1)\sqrt{3}\sqrt{x} + \frac{x-1}{\sqrt{x+1}}}{(x-1)\sqrt{x} - \sqrt{x+1}\sqrt{3}}. \]This is equivalent to \[ \sqrt{x^2 - 1} \le \frac{(x+1)\sqrt{3}\sqrt{x} + \frac{x-1}{\sqrt{x+1}}}{-(x-1)\sqrt{x} + \sqrt{x+1}\sqrt{3}} \]and after clearing denominators, we get \[ (x+1)\sqrt{3}\sqrt{x-1} - (x-1)\sqrt{x}\sqrt{x^2-1} \le (x+1)\sqrt{3}\sqrt{x} + \frac{x-1}{\sqrt{x+1}}. \]This is true because $(x+1)\sqrt{3}\sqrt{x-1} - (x-1)\sqrt{x}\sqrt{x^2-1} \le (x+1)\sqrt{3}\sqrt{x-1} < (x+1)\sqrt{3}\sqrt{x} \le (x+1)\sqrt{3}\sqrt{x} + \frac{x-1}{\sqrt{x+1}}$. We have our desired contradiction.

Case 3. $\omega$ intersects both lines $XY, XZ$.

One of the tangents from $X$ to $\omega$ must be line $BC$; proceed as in the previous case. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ghoshadi
925 posts
#8 • 2 Y
Y by Adventure10, Mango247
wrong solution... ignore
This post has been edited 7 times. Last edited by Ghoshadi, Dec 20, 2017, 5:21 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tastymath75025
3223 posts
#9 • 4 Y
Y by Amir Hossein, BobaFett101, Adventure10, Mango247
Here's a very clean and mostly synthetic solution :)

By Miquel's Theorem, $(AYZ), (BZX), (CXY)$ meet at some point $P$. Clearly $\angle ABP + \angle ACP = \angle ZXP+\angle YXP = 60^{\circ}$ and similarly for the other vertices. This implies two things: Firstly, $\angle BPC = 180^{\circ} - \angle PBC-\angle PCB = 180^{\circ} - (180^{\circ} - \angle A -60^{\circ}) = 60^{\circ} + \angle A$ and similarly for $\angle CPA, \angle APB$, meaning that $P$ is fixed. Secondly, if $Q$ is the image of $P$ under $\sqrt{bc}$-inversion, then $Q$ lies on the opposite side of $BC$ as $A$ with $\triangle QBC$ equilateral.

We'll show $I$ is outside $\triangle AYZ$; similar arguments combined with the fact that $I$ lies inside $\triangle ABC$ will that $I$ is inside $\triangle XYZ$. By performing a $\sqrt{bc}$ inversion, $Y$ and $Z$ map to points $E,F$ on rays $AC,AB$ extended past $C,B$ with $E,Q,F$ collinear; instead of showing $I$ is outside $\triangle AYZ$, we're then left with showing the $A$-excenter $I_A$ is inside $(AEF)$ (because $I,I_A$ are inverses in $\sqrt{bc}$-inversion).

Consider any point $J$ on the internal angle bisector of $J$ and any points $U,V$ on $AB,AC$ with $AUJV$ cyclic. For any fixed $J$, I claim $AU+AV$ is always fixed; indeed, let $J_1,J_2$ be the projections of $J$ onto $AB,AC$. It then follows that $\triangle JJ_1U\cong \triangle JJ_2V$, so $J_1U=J_2V\implies AU+AV=AJ_1+AJ_2$. Furthermore, as $J$ moves towards $A$ along the angle bisector, this value of $AJ_1+AJ_2$ obviously decreases. When $J=I_A$, we have $AJ_1+AJ_2 = a+b+c$, so to prove that $I_A$ lies inside $(AEF)$, it's enough to show $AE+AF > a+b+c$ or $CE+BF>a$.

Now we're almost done. Let $\angle E=y, \angle F=z, \angle CQE=w, \angle BQF=x$. Since $E,F$ are not within segments $AC,AB$, we must have $0<w,x<120^{\circ}$. Then clearly $w+x=120^{\circ}$. Meanwhile, we have $w+y=\angle ACQ = \angle C+ 60^{\circ}$, so since $ABC$ is acute we have $60^{\circ} < w+y < 150^{\circ}$ and similarly for $x+z$. By the Law of Sines in $\triangle CEQ, \triangle BQF$, we get $CE= \frac{\sin w}{\sin y}CQ,BF=\frac{\sin x}{\sin z}BQ$. Conveniently we have $CQ=BQ=a$, so we just need to show $\frac{\sin w}{\sin y}+\frac{\sin x}{\sin z}>1$.

Case 1: $15^{\circ} \le w,x\le 105^{\circ}$. Then $\frac{\sin w}{\sin y}+\frac{\sin x}{\sin z} \ge \sin w + \sin x$. Since $\sin$ is concave on $[0,\pi]$ and $w+x$ is fixed, we have by Karamata that $\sin w +\sin x \ge \sin 15^{\circ} + \sin 105^{\circ} =\frac{\sqrt{6}}{2}>1$, so we're done.

Case 2: Suppose case 1 does not hold. WLOG $w<15^{\circ}, x>105^{\circ}$. Then $x+z<150^{\circ}$ yields $z<45^{\circ}$. Since $x<120^{\circ}$, we have $\frac{\sin w}{\sin y}+ \frac{\sin x}{\sin z} > \frac{\sin x}{\sin z}\ge \frac{\sin 120^{\circ}}{\sin 45^{\circ}}>1$, so once again we're done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathStudent2002
934 posts
#10 • 1 Y
Y by Adventure10
Proceed as above until we want to show that $CE+BF > a$. We will prove the more general result that if $BCQ$ is equilateral, and $\ell$ passes through $Q$ but not the interior of the triangle, and $E,F$ lie on $\ell$ so that $E,C$ and $B,F$ are on the same side of $BJ$, then $CE+BF > a$. Suppose $\angle BQC$ is $60$ measured counterclockwise (henceforth CCW). If the angle $\angle(CQ,\ell)$ measured CCW is greater than $90$ then $CE>a$ and we are done. Similarly if $\angle(\ell,QB)$ measured CCW is greater than $90$ then we are done.

Now we may assume that $E,F$ are the foot from $C,B$ to $\ell$. Letting $\alpha = \angle(CQ,\ell)$, and $\beta = \angle(\ell,QB)$ we want $\sin\alpha + \sin \beta > 1$ for acute $\alpha, \beta$ summing to $120$. But this is clear from $\sin\alpha+\sin\beta = 2\sin((\alpha+\beta)/2)\cos((\alpha-\beta)/2) = \sqrt 3 \cos((\alpha-\beta)/2) > 1.5 > 1$ since $|\alpha-\beta| < 30$, where all angle measures are in degrees.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#11
Y by
Lemma 1. If $0\leq a\leq b\leq 180^{\circ}$, let $I=[a,b]$ then
$$\underset{\theta\in I}{\min}\sin\theta=\min\{\sin a,\sin b\}$$Proof. Obvious. $\blacksquare$
Lemma 2. If $\triangle ZYX$ is an equilateral triangle and $A$ is a point lie inside $\angle ZXY$ but outside $\triangle ZYX$, with $\angle AZY>30^{\circ}$. Let $B_1$ be the projection of $X$ on $AZ$. Let $A_1$ be the intersection of the angle bisector of $\angle ZAY$ with $ZY$. Then
$$ZB_1A'<\frac{1}{2}\angle ZB_1X=45^{\circ}$$Proof.
Let $\omega$ be the circle with diameter $ZX$. Let $M,N$ be the intersection of the perpendicular bisector of $ZX$ and $\omega$, such that $M$ lies between $M$ and $N$.
[asy]
size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -21.719175998461708, xmax = 9.273710844034177, ymin = -17.18746127643795, ymax = 9.139829697295111;  /* image dimensions */pen zzttqq = rgb(0.6,0.2,0); draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904)--cycle, linewidth(0.8) + zzttqq);  /* draw figures */draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8) + zzttqq); draw((-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904), linewidth(0.8) + zzttqq); draw((-11.017731064331391,-1.9381128007424904)--(-7.139188908577875,-7.384155671239871), linewidth(0.8) + zzttqq); draw((-8.305587875768596,3.196749245418661)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8)); draw(circle((-9.07845998645463,-4.661134235991178), 3.3429953709679467), linewidth(0.8)); draw((-8.305587875768596,3.196749245418661)--(-12.420791334010781,-4.59450681328396), linewidth(0.8)); draw((-12.420791334010781,-4.59450681328396)--(-7.139188908577875,-7.384155671239871), linewidth(0.8)); draw((-8.305587875768596,3.196749245418661)--(-7.739441147959949,-1.6248997166747086), linewidth(0.8)); draw((-11.801481421703317,-6.600405313867935)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8));  /* dots and labels */dot((-7.139188908577875,-7.384155671239871),dotstyle); label("$X$", (-7.028103292654967,-7.106441631432569), NE * labelscalefactor); dot((-4.362048510504779,-1.3022181994597748),dotstyle); label("$Y$", (-4.25096289458186,-1.024504159652463), NE * labelscalefactor); dot((-11.017731064331391,-1.9381128007424904),dotstyle); label("$Z$", (-11.74924196937925,-1.5243894313056223), NE * labelscalefactor); dot((-8.305587875768596,3.196749245418661),dotstyle); label("$A$", (-8.194502259845672,3.4744632852259714), NE * labelscalefactor); dot((-12.420791334010781,-4.59450681328396),linewidth(4pt) + dotstyle); label("$B_1$", (-13.30444059230019,-5.023586332877738), NE * labelscalefactor); dot((-7.739441147959949,-1.6248997166747086),linewidth(4pt) + dotstyle); label("$A'$", (-7.6390741802310504,-1.413303815382698), NE * labelscalefactor); dot((-11.801481421703317,-6.600405313867935),linewidth(4pt) + dotstyle); label("$N$", (-11.693699161417788,-6.384385127933561), NE * labelscalefactor); dot((-6.355438551205943,-2.7218631581144237),linewidth(4pt) + dotstyle); label("$M$", (-6.250503981194497,-2.49638857063121), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
CASE I: $\angle AZY<75^{\circ}$
Then $B_1$ lies in arc $ZN$ of $\omega$. We have
$$\angle ZB_1A'<\angle ZB_1Y<\angle ZB_1M=45^{\circ}$$[asy]
size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -21.719175998461708, xmax = 9.273710844034175, ymin = -17.18746127643795, ymax = 9.139829697295113;  /* image dimensions */pen zzttqq = rgb(0.6,0.2,0); draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904)--cycle, linewidth(0.8) + zzttqq);  /* draw figures */draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8) + zzttqq); draw((-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904), linewidth(0.8) + zzttqq); draw((-11.017731064331391,-1.9381128007424904)--(-7.139188908577875,-7.384155671239871), linewidth(0.8) + zzttqq); draw((-10.943871253938049,3.8910343449369376)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8)); draw(circle((-9.078459986454636,-4.661134235991182), 3.3429953709679463), linewidth(0.8)); draw((-10.943871253938049,3.8910343449369376)--(-11.086102975491896,-7.334145212190616), linewidth(0.8)); draw((-11.086102975491896,-7.334145212190616)--(-7.139188908577875,-7.384155671239871), linewidth(0.8)); draw((-10.943871253938049,3.8910343449369376)--(-8.28793562821728,-1.6773037602883083), linewidth(0.8)); draw((-11.80148142170333,-6.600405313867945)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8)); draw((-6.355438551205943,-2.7218631581144237)--(-6.471815340305368,-1.5037887110017072), linewidth(0.8));  /* dots and labels */dot((-7.139188908577875,-7.384155671239871),dotstyle); label("$X$", (-7.028103292654967,-7.106441631432567), NE * labelscalefactor); dot((-4.362048510504779,-1.3022181994597748),dotstyle); label("$Y$", (-4.25096289458186,-1.0245041596524616), NE * labelscalefactor); dot((-11.017731064331391,-1.9381128007424904),dotstyle); label("$Z$", (-11.74924196937925,-1.5243894313056208), NE * labelscalefactor); dot((-10.943871253938049,3.8910343449369376),dotstyle); label("$A$", (-10.832785638015125,4.16874838474425), NE * labelscalefactor); dot((-11.086102975491896,-7.334145212190616),linewidth(4pt) + dotstyle); label("$B_1$", (-11.971413201225099,-7.745183922989382), NE * labelscalefactor); dot((-8.28793562821728,-1.6773037602883083),linewidth(4pt) + dotstyle); label("$A'$", (-8.166730855864941,-1.4688466233441586), NE * labelscalefactor); dot((-11.80148142170333,-6.600405313867945),linewidth(4pt) + dotstyle); label("$N$", (-11.693699161417788,-6.384385127933559), NE * labelscalefactor); dot((-6.355438551205943,-2.7218631581144237),linewidth(4pt) + dotstyle); label("$M$", (-6.250503981194497,-2.4963885706312086), NE * labelscalefactor); dot((-6.471815340305368,-1.5037887110017072),linewidth(4pt) + dotstyle); label("$D$", (-6.361589597117422,-1.274446795479041), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
CASE II: $\angle AZY\geq 75^{\circ}$.
Let $D$ be the projection of $M$ onto $ZY$. Then we have $$\frac{ZA'}{ZY}=\frac{\sin\angle AYZ}{\sin\angle AYZ+\sin\angle AZY}\leq \frac{1}{1+\sin 75^{\circ}}<\frac{\sin75^{\circ}}{\sqrt{2}}=\frac{ZD}{ZY}$$Therefore $ZA'<ZD$. From this, combine with the fact that $B_1$ lies in arc $NX$ of $\omega$, we have
$$\angle ZB_1A'<\angle ZB_1D<\angle ZB_1D=45^{\circ}$$$\blacksquare$
We will now show the equivalent problem.
CLAIM. Given a fixed point $A$ and an equilateral triangle $XYZ$ such that $A$ lies inside $\angle ZXY$ and that $A,Z$ lie on different side of $YZ$. Let $B$ be a point on $AZ$ beyond $Z$ and that $BX$ intersect $AY$ at $C$, where $Y$ lies between $A,C$. Furthermore, $\triangle ABC$ is acute. Then the incenter of $\triangle ABC$ doesn't lie in $\triangle AZY$.
Proof.
Let $A'$ be the intersection of the angle bisector of $\angle ZAY$ and $ZY$. Suppose on the contrary that the incenter $I$ of $\triangle ABC$ lies inside $AZY$, then it must lie in the segment $AA'$. Therefore,
$$\angle ABA'\geq \angle ABI=\frac{1}{2}\angle ABX$$Hence $\angle ABA'\geq \angle A'BX$. Since $\angle ABA'$ and $\angle ABX$ are both acute we have
$$\frac{\sin\angle ABA'}{\sin\angle A'BX}\geq 1 \quad(1)$$Now for any point $B$ on $AZ$ such that $ABC$ is well-defined and acute define the function
$$f(B)=\frac{\sin\angle ABA'}{\sin\angle A'BX}$$We will show that this function is strictly less than $1$, hence obtaining a contradiction with $(1)$.
Now, applying Ceva's theorem we have
$$f(B)=\frac{AA'}{\sin\angle BXA'}\frac{\sin\angle BAA'}{A'X}=\left(\frac{AA'}{\sin\angle ZAA'}\cdot{A'X}\right)\frac{1}{\sin\angle BXA'}$$Magically, the term in the bracket does not depend on $B$, so it is a constant. We now further distinguish two cases. Let $\angle BXA'=\theta$
[asy]
size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -24.80180184032286, xmax = 6.191085002173027, ymin = -16.826433024688445, ymax = 9.500857949044617;  /* image dimensions */pen zzttqq = rgb(0.6,0.2,0); draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904)--cycle, linewidth(0.8) + zzttqq);  /* draw figures */draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8) + zzttqq); draw((-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904), linewidth(0.8) + zzttqq); draw((-11.017731064331391,-1.9381128007424904)--(-7.139188908577875,-7.384155671239871), linewidth(0.8) + zzttqq); draw((-4.278734298562591,1.7804076424013773)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8)); draw(circle((-9.078459986454632,-4.66113423599118), 3.342995370967947), linewidth(0.8)); draw((-4.278734298562591,1.7804076424013773)--(-10.348141084597264,-1.5686388100717752), linewidth(0.8)); draw((-4.278734298562591,1.7804076424013773)--(-6.2658824078301185,-1.484113547871813), linewidth(0.8)); draw((-11.801481421703325,-6.600405313867942)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8)); draw((-20.245525447649467,-7.029930359373092)--(-11.017731064331391,-1.9381128007424904), linewidth(0.8)); draw((-20.245525447649467,-7.029930359373092)--(-4.52833232572662,-7.4547193626682775), linewidth(0.8)); draw((-4.52833232572662,-7.4547193626682775)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8));  /* dots and labels */dot((-7.139188908577875,-7.384155671239871),dotstyle); label("$X$", (-7.02810329265497,-7.106441631432567), NE * labelscalefactor); dot((-4.362048510504779,-1.3022181994597748),dotstyle); label("$Y$", (-4.250962894581862,-1.0245041596524616), NE * labelscalefactor); dot((-11.017731064331391,-1.9381128007424904),dotstyle); label("$Z$", (-11.749241969379254,-1.5243894313056208), NE * labelscalefactor); dot((-4.278734298562591,1.7804076424013773),dotstyle); label("$A$", (-4.167648682639669,2.058121682208688), NE * labelscalefactor); dot((-6.2658824078301185,-1.484113547871813),linewidth(4pt) + dotstyle); label("$A'$", (-6.944789080712777,-1.4688466233441586), NE * labelscalefactor); dot((-11.801481421703325,-6.600405313867942),linewidth(4pt) + dotstyle); label("$N$", (-11.693699161417792,-6.384385127933559), NE * labelscalefactor); dot((-6.355438551205939,-2.721863158114421),linewidth(4pt) + dotstyle); label("$M$", (-6.2505039811945,-2.4963885706312086), NE * labelscalefactor); dot((-4.52833232572662,-7.4547193626682775),linewidth(4pt) + dotstyle); label("$C_1$", (-4.417591318466249,-7.245298651336222), NE * labelscalefactor); dot((-20.245525447649467,-7.029930359373092),linewidth(4pt) + dotstyle); label("$B_1$", (-20.136205971560038,-6.800956187644525), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
CASE I: One of $\angle AZY,\angle AYZ$ is less than or equal to $30^{\circ}$.
WLOG assume $\angle AZY<30^{\circ}$, then $\angle AYZ>60^{\circ}$ since $A$ is acute. Let the projection from $X$ to $AY$ meet $AZ$, $AY$ at $B_1,C_1$ respectively. Now we have $\theta\in[\angle BZX,\angle BB_1X]$. Therefore, from Lemma 1 we have
$$f(B)\leq \max\{f(Z),f(B_1)\}$$However, we have $f(Z)=\frac{\sin\angle AZY}{\sin 60^{\circ}}<1$. Meanwhile, from Lemma 2, we have $\frac{\sin\angle ACA'}{\sin\angle B_1CA'}<1$, hence by Ceva's theorem
$$f(B_1)=\frac{\sin\angle AB_1A'}{\sin\angle C_1B_1A'}<1$$This shows that $f$ is strictly less than $1$.
[asy]
size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -24.80180184032286, xmax = 6.191085002173022, ymin = -16.82643302468844, ymax = 9.500857949044619;  /* image dimensions */pen zzttqq = rgb(0.6,0.2,0); draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904)--cycle, linewidth(0.8) + zzttqq);  /* draw figures */draw((-7.139188908577875,-7.384155671239871)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8) + zzttqq); draw((-4.362048510504779,-1.3022181994597748)--(-11.017731064331391,-1.9381128007424904), linewidth(0.8) + zzttqq); draw((-11.017731064331391,-1.9381128007424904)--(-7.139188908577875,-7.384155671239871), linewidth(0.8) + zzttqq); draw((-8.472216299652986,6.418232107183469)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8)); draw(circle((-9.078459986454636,-4.661134235991181), 3.342995370967946), linewidth(0.8)); draw((-8.472216299652986,6.418232107183469)--(-12.206493874121339,-5.84055021346556), linewidth(0.8)); draw((-8.472216299652986,6.418232107183469)--(-7.69196618093215,-1.6203638820724862), linewidth(0.8)); draw((-13.748564275447592,-10.902815938494257)--(-11.017731064331391,-1.9381128007424904), linewidth(0.8)); draw((-13.748564275447592,-10.902815938494257)--(-2.4524954188049035,-4.8890814392744), linewidth(0.8)); draw((-2.4524954188049035,-4.8890814392744)--(-4.362048510504779,-1.3022181994597748), linewidth(0.8)); draw((-12.206493874121339,-5.840550213465564)--(0.04009755749457112,-9.571114192053136), linewidth(0.8)); draw((0.04009755749457112,-9.571114192053136)--(-2.4524954188049035,-4.8890814392744), linewidth(0.8));  /* dots and labels */dot((-7.139188908577875,-7.384155671239871),dotstyle); label("$X$", (-7.02810329265497,-7.106441631432566), NE * labelscalefactor); dot((-4.362048510504779,-1.3022181994597748),dotstyle); label("$Y$", (-4.250962894581862,-1.0245041596524598), NE * labelscalefactor); dot((-11.017731064331391,-1.9381128007424904),dotstyle); label("$Z$", (-11.749241969379254,-1.5243894313056192), NE * labelscalefactor); dot((-8.472216299652986,6.418232107183469),dotstyle); label("$A$", (-8.361130683730062,6.69594614699078), NE * labelscalefactor); dot((-7.69196618093215,-1.6203638820724862),linewidth(4pt) + dotstyle); label("$A'$", (-8.361130683730062,-1.5799322392670814), NE * labelscalefactor); dot((-2.4524954188049035,-4.8890814392744),linewidth(4pt) + dotstyle); label("$C_2$", (-2.334736019911418,-4.662558081128231), NE * labelscalefactor); dot((-13.748564275447592,-10.902815938494257),linewidth(4pt) + dotstyle); label("$B_2$", (-13.637697440068967,-10.688952744946874), NE * labelscalefactor); dot((-12.206493874121339,-5.840550213465564),linewidth(4pt) + dotstyle); label("$B_1$", (-12.082498817148027,-5.606785816473088), NE * labelscalefactor); dot((0.04009755749457112,-9.571114192053136),linewidth(4pt) + dotstyle); label("$C_1$", (0.16469033835437846,-9.355925353871783), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
CASE II: Both $\angle AZY,\angle AYZ$ is at least $30^{\circ}$.
Suppose the perpendicular line from $X$ to $AZ$ intersect $AZ,AY$ at $B_1,C_1$, and the perpendicular line from $X$ to $AY$ intersect $AZ,AY$ at $B_2,C_2$. Notice that $B_1,B_2,C_1,C_2$ lies in the extension of either $AZ$ or $AY$. Now, similar to the above case we have
$$f(B)\leq \max\{f(B_1),f(B_2)\}$$Moreover, $$f(B_1)<1, f(C_2)<1$$by Lemma 2. Therefore, by Ceva's theorem we have
$$f(B_2)=\frac{\sin\angle AB_2A'}{\sin\angle C_2B_2A'}<1$$as well, this implies $f$ is strictly less than 1. $\blacksquare$

This contradiction completes the proof.

Motivational Remarks
This post has been edited 1 time. Last edited by mathaddiction, Nov 23, 2020, 11:54 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Autistic_Turk
9 posts
#12
Y by
Amir Hossein wrote:
The vertices $X, Y , Z$ of an equilateral triangle $XYZ$ lie respectively on the sides $BC, CA, AB$ of an acute-angled triangle $ABC.$ Prove that the incenter of triangle $ABC$ lies inside triangle $XYZ.$

Proposed by Nikolay Beluhov, Bulgaria

Prove by contradiction: notice incenter is either in triangle AZY or BZX or CYX without using generality of problem we could assume I is in the triangle AZY
Now we choose BZX our angel of freedom now define T as intersection of angle bisector of ABC and segment ZY now we could easily calculate ZT/ZX now we define Q as intersection of angle bisector of ACB and segment ZY now we could easily calculate QY/ZX therfore we could calculate QY+ZT/ZX and by bit of calculation we know QY+ZT/ZX>1 therfore I is in the Quadrilateral BZYC with is contradiction
Z K Y
N Quick Reply
G
H
=
a