Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
3-var inequality
sqing   1
N 9 minutes ago by sqing
Source: Own
Let $ a,b>0 $ and $\frac{1}{a^2+3}+ \frac{1}{b^2+ 3} \leq \frac{1}{2} . $ Prove that
$$a^2+ab+b^2\geq 3$$$$a^2-ab+b^2 \geq 1 $$Let $ a,b>0 $ and $\frac{1}{a^3+3}+ \frac{1}{b^3+ 3}\leq \frac{1}{2} . $ Prove that
$$a^3+ab+b^3 \geq 3$$$$ a^3-ab+b^3\geq 1 $$
1 reply
1 viewing
sqing
25 minutes ago
sqing
9 minutes ago
IMO Genre Predictions
ohiorizzler1434   63
N 14 minutes ago by Kaimiaku
Everybody, with IMO upcoming, what are you predictions for the problem genres?


Personally I predict: predict
63 replies
ohiorizzler1434
May 3, 2025
Kaimiaku
14 minutes ago
Iranians playing with cards module a prime number.
Ryan-asadi   2
N 40 minutes ago by AshAuktober
Source: Iranian Team Selection Test - P2
.........
2 replies
1 viewing
Ryan-asadi
2 hours ago
AshAuktober
40 minutes ago
Coloring plane in black
Ryan-asadi   1
N 41 minutes ago by AshAuktober
Source: Iran Team Selection Test - P3
..........
1 reply
Ryan-asadi
2 hours ago
AshAuktober
41 minutes ago
No more topics!
Overlapping game
Kei0923   3
N Apr 30, 2025 by CrazyInMath
Source: 2023 Japan MO Finals 1
On $5\times 5$ squares, we cover the area with several S-Tetrominos (=Z-Tetrominos) along the square so that in every square, there are two or fewer tiles covering that (tiles can be overlap). Find the maximum possible number of squares covered by at least one tile.
3 replies
Kei0923
Feb 11, 2023
CrazyInMath
Apr 30, 2025
Overlapping game
G H J
G H BBookmark kLocked kLocked NReply
Source: 2023 Japan MO Finals 1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kei0923
95 posts
#1 • 2 Y
Y by GeoKing, itslumi
On $5\times 5$ squares, we cover the area with several S-Tetrominos (=Z-Tetrominos) along the square so that in every square, there are two or fewer tiles covering that (tiles can be overlap). Find the maximum possible number of squares covered by at least one tile.
This post has been edited 1 time. Last edited by Kei0923, Feb 11, 2023, 11:22 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tintarn
9042 posts
#2 • 2 Y
Y by SPHS1234, GuvercinciHoca
Answer
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hectorleo123
344 posts
#4 • 1 Y
Y by GeoKing
Kei0923 wrote:
On $5\times 5$ squares, we cover the area with several S-Tetrominos (=Z-Tetrominos) along the square so that in every square, there are two or fewer tiles covering that (tiles can be overlap). Find the maximum possible number of squares covered by at least one tile.
$\color{blue}\boxed{\textbf{Answer: 24}}$
$\color{blue}\boxed{\textbf{Proof:}}$
$\color{blue}\rule{24cm}{0.3pt}$
$\text{Let us consider the following coloring:}$
[asy]
draw((0,0)--(5,0)--(5,5)--(0,5)--(0,0));
draw((1,0)--(1,5));
draw((2,0)--(2,5));
draw((3,0)--(3,5));
draw((4,0)--(4,5));
draw((0,1)--(5,1));
draw((0,2)--(5,2));
draw((0,3)--(5,3));
draw((0,4)--(5,4));
fill((1,1)--(2,1)--(2,2)--(1,2)--cycle, black);
fill((1,3)--(2,3)--(2,4)--(1,4)--cycle, black);
fill((3,3)--(4,3)--(4,4)--(3,4)--cycle, black);
fill((3,1)--(4,1)--(4,2)--(3,2)--cycle, black);
[/asy]
$$\text{Let's note that each tetromino covers exactly one black square, as there can be at most 2 tiles per square and there are 4 black squares}$$$$\Rightarrow \text{Number of tiles}\le 2\times 4=8$$$\text{Let us consider the following coloring:}$
[asy]
draw((0,0)--(5,0)--(5,5)--(0,5)--(0,0));
draw((1,0)--(1,5));
draw((2,0)--(2,5));
draw((3,0)--(3,5));
draw((4,0)--(4,5));
draw((0,1)--(5,1));
draw((0,2)--(5,2));
draw((0,3)--(5,3));
draw((0,4)--(5,4));
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle, blue);
fill((0,2)--(0,3)--(1,3)--(1,2)--cycle, blue);
fill((0,4)--(0,5)--(1,5)--(1,4)--cycle, blue);
fill((2,0)--(3,0)--(3,1)--(2,1)--cycle, blue);
fill((2,2)--(3,2)--(3,3)--(2,3)--cycle, blue);
fill((2,4)--(3,4)--(3,5)--(2,5)--cycle, blue);
fill((4,0)--(5,0)--(5,1)--(4,1)--cycle, blue);
fill((4,2)--(5,2)--(5,3)--(4,3)--cycle, blue);
fill((4,4)--(4,5)--(5,5)--(5,4)--cycle, blue);
[/asy]
$$\text{Let's keep in mind that each tetromino covers exactly one blue square, since there are 9 blue squares and there are at most 8 tiles,}$$$$\text{then at least 1 square remains uncovered}$$$$\text{Number of squares covered by at least one tile}\le 24$$$\color{blue}\rule{24cm}{0.3pt}$
$\color{blue}\boxed{\textbf{Example:}}$
$\color{blue}\rule{24cm}{0.3pt}$
$\text{We fill the board with two layers:}$
[asy]
draw((0,0)--(5,0)--(5,5)--(0,5)--(0,0));
draw((1,0)--(1,1)--(0,1));
draw((0,3)--(1,3)--(1,2)--(2,2)--(2,0));
draw((2,2)--(2,4)--(1,4)--(1,5));
draw((5,0)--(4,0)--(4,1)--(3,1)--(3,5));
draw((4,5)--(4,4)--(5,4));
draw((3,3)--(4,3)--(4,2)--(5,2));
[/asy]
[asy]
draw((0,0)--(5,0)--(5,5)--(0,5)--(0,0));
draw((0,1)--(1,1)--(1,2)--(3,2)--(3,1)--(2,1)--(2,0));
draw((3,2)--(5,2));
draw((5,1)--(4,1)--(4,0));
draw((1,5)--(1,4)--(0,4));
draw((0,3)--(2,3)--(2,4)--(3,4)--(3,5));
draw((2,3)--(4,3)--(4,4)--(5,4));
[/asy]
$$\text{Note that there are 24 squares that meet the order}$$$\color{blue}\rule{24cm}{0.3pt}$
$\color{green}\boxed{\textbf{Conclusion:}}$
$\color{green}\rule{24cm}{0.3pt}$
$$\boxed{\textbf{There are at most 24 squares covered by at least one tile}}_\blacksquare$$$\color{green}\rule{24cm}{0.3pt}$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CrazyInMath
457 posts
#6
Y by
The answer is $24$. Consider that two S-tetromino can form a $2\times 5$ rectangle that has two corners missing
Using four of those can cover everything but the center square.
Consider color the board like this

ABABA
CDCDC
ABABA
CDCDC
ABABA

then each piece would cover one of each A, B, C, D.
As there are only four Ds, we can use at most eight S-tetrominoes
As there are nine A's, there would at least be one uncovered A, so one cannot cover all squares.
Z K Y
N Quick Reply
G
H
=
a