Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
2 var inquality
Iveela   19
N 16 minutes ago by sqing
Source: Izho 2025 P1
Let $a, b$ be positive reals such that $a^3 + b^3 = ab + 1$. Prove that \[(a-b)^2 + a + b \geq 2\]
19 replies
Iveela
Jan 14, 2025
sqing
16 minutes ago
Set of perfect powers is irreducible
Assassino9931   0
17 minutes ago
Source: Al-Khwarizmi International Junior Olympiad 2025 P4
For two sets of integers $X$ and $Y$ we define $X\cdot Y$ as the set of all products of an element of $X$ and an element of $Y$. For example, if $X=\{1, 2, 4\}$ and $Y=\{3, 4, 6\}$ then $X\cdot Y=\{3, 4, 6, 8, 12, 16, 24\}.$ We call a set $S$ of positive integers good if there do not exist sets $A,B$ of positive integers, each with at least two elements and such that the sets $A\cdot B$ and $S$ are the same. Prove that the set of perfect powers greater than or equal to $2025$ is good.

(In any of the sets $A$, $B$, $A\cdot B$ no two elements are equal, but any two or three of these sets may have common elements. A perfect power is an integer of the form $n^k$, where $n>1$ and $k > 1$ are integers.)

Lajos Hajdu and Andras Sarkozy, Hungary
0 replies
Assassino9931
17 minutes ago
0 replies
Al-Khwarizmi birth year in a combi process
Assassino9931   0
19 minutes ago
Source: Al-Khwarizmi International Junior Olympiad 2025 P3
On a circle are arranged $100$ baskets, each containing at least one candy. The total number of candies is $780$. Asad and Sevinch make moves alternatingly, with Asad going first. On one move, Asad can take all the candies from $9$ consecutive non-empty baskets, while Sevinch can take all the candies from a single non-empty basket that has at least one empty neighboring basket. Prove that Asad can take overall at least $700$ candies, regardless of the initial distribution of candies and Sevinch's actions.

Shubin Yakov, Russia
0 replies
Assassino9931
19 minutes ago
0 replies
Grouping angles in a pentagon with bisectors
Assassino9931   0
21 minutes ago
Source: Al-Khwarizmi International Junior Olympiad 2025 P2
Let $ABCD$ be a convex quadrilateral with \[\angle ADC = 90^\circ, \ \ \angle BCD = \angle ABC > 90^\circ, \mbox{ and } AB = 2CD.\]The line through \(C\), parallel to \(AD\), intersects the external angle bisector of \(\angle ABC\) at point \(T\). Prove that the angles $\angle ATB$, $\angle TBC$, $\angle BCD$, $\angle CDA$, $\angle DAT$ can be divided into two groups, so that the angles in each group have a sum of $270^{\circ}$.

Miroslav Marinov, Bulgaria
0 replies
Assassino9931
21 minutes ago
0 replies
Problem 2, Grade 12th RMO Shortlist - Year 2002
sticknycu   3
N Yesterday at 11:59 PM by RobertRogo
Let $A \in M_2(C), A \neq O_2, A \neq I_2, n \in \mathbb{N}^*$ and $S_n = \{ X \in M_2(C) | X^n = A \}$.
Show:
a) $S_n$ with multiplication of matrixes operation is making an isomorphic-group structure with $U_n$.
b) $A^2 = A$.

Marian Andronache
3 replies
sticknycu
Jan 3, 2020
RobertRogo
Yesterday at 11:59 PM
2024 Putnam A1
KevinYang2.71   21
N Yesterday at 10:01 PM by KAME06
Determine all positive integers $n$ for which there exists positive integers $a$, $b$, and $c$ satisfying
\[
2a^n+3b^n=4c^n.
\]
21 replies
KevinYang2.71
Dec 10, 2024
KAME06
Yesterday at 10:01 PM
Miklos Schweitzer 1968_9
ehsan2004   1
N Yesterday at 7:52 PM by pi_quadrat_sechstel
Let $ f(x)$ be a real function such that
\[ \lim_{x \rightarrow +\infty} \frac{f(x)}{e^x}=1\]
and $ |f''(x)|\leq c|f'(x)|$ for all sufficiently large $ x$. Prove that \[ \lim_{x \rightarrow +\infty} \frac{f'(x)}{e^x}=1.\]

P. Erdos
1 reply
ehsan2004
Oct 8, 2008
pi_quadrat_sechstel
Yesterday at 7:52 PM
Putnam 1956 B7
sqrtX   7
N Yesterday at 7:08 PM by bjump
Source: Putnam 1956
The polynomials $P(z)$ and $Q(z)$ with complex coefficients have the same set of numbers for their zeros but possibly different multiplicities. The same is true for the polynomials
$$P(z)+1 \;\; \text{and} \;\; Q(z)+1.$$Prove that $P(z)=Q(z).$
7 replies
sqrtX
Jul 5, 2022
bjump
Yesterday at 7:08 PM
Linear Space Decomposition
Suan_16   1
N Yesterday at 6:09 PM by loup blanc
Let $A$ be a linear transformation on linear space $V$ satisfying:$$A^l=0$$but $$A^{l-1} \neq 0$$, and $V_0$ is the eigensubspace of eigenvalue $0$. Prove that $V$ can be decomposed to $dim V_0$ $A$-cyclic subspace's direct sum.

Click to reveal hidden text
1 reply
Suan_16
Apr 18, 2025
loup blanc
Yesterday at 6:09 PM
Romanian National Olympiad 1997 - Grade 11 - Problem 2
Filipjack   1
N Yesterday at 5:05 PM by loup blanc
Source: Romanian National Olympiad 1997 - Grade 11 - Problem 2
Let $A$ be a square matrix of odd order (at least $3$) whose entries are odd integers. Prove that if $A$ is invertible, then it is not possible for all the minors of the entries of a row to have equal absolute values.
1 reply
Filipjack
Apr 6, 2025
loup blanc
Yesterday at 5:05 PM
Serious qustion
Thayaden   2
N Yesterday at 4:54 PM by ReticulatedPython
Let $F_n$ be then $n$-th fibbiance number. As $n$ gets bigger and bigger, we have,
$$\frac{F_{n+1}}{F_n}\approx\varphi,$$my question is dose,
$$\lim_{n\rightarrow \infty}\frac{F_{n+1}}{F_n}=\varphi.$$My reservations about this is that $\varphi\in\mathbb{R}\setminus\mathbb{Q}$ and $F_n\in\mathbb{Z}^+$ so $\frac{F_{n+1}}{F_n}\in\mathbb{Q}$. So, if the limit holds, does that mean that if $S$ is a set and $P$ is a set, for each $s\in S$ that $s\not\in P$ we can have, for $\text{Range}(f)=S$ we can have,
$$\lim_{x\rightarrow n}f(x)\in P,$$for some $n$?
2 replies
Thayaden
Yesterday at 4:40 PM
ReticulatedPython
Yesterday at 4:54 PM
Putnam 2010 B5
Kent Merryfield   25
N Yesterday at 2:59 PM by Rohit-2006
Is there a strictly increasing function $f:\mathbb{R}\to\mathbb{R}$ such that $f'(x)=f(f(x))$ for all $x?$
25 replies
Kent Merryfield
Dec 6, 2010
Rohit-2006
Yesterday at 2:59 PM
Determinant problem
Entrepreneur   3
N Yesterday at 2:49 PM by Entrepreneur
Source: Hall & Knight
If a determinant is of $n^{\text{th}}$ order, and if the constituents of its first, second, ..., $n^{\text{th}}$ rows are the first $n$ figurate numbers of the first, second, ..., $n^{\text{th}}$ orders respectively, show that it's value is $1.$
3 replies
Entrepreneur
May 5, 2025
Entrepreneur
Yesterday at 2:49 PM
AB=BA if A-nilpotent
KevinDB17   2
N Yesterday at 1:01 PM by loup blanc
Let A,B 2 complex n*n matrices such that AB+I=A+B+BA
If A is nilpotent prove that AB=BA
2 replies
KevinDB17
Mar 30, 2025
loup blanc
Yesterday at 1:01 PM
Non-negative real variables inequality
KhuongTrang   2
N Apr 29, 2025 by NguyenVanHoa29
Source: own
Problem. Let $a,b,c\ge 0: ab+bc+ca>0.$ Prove that$$\color{blue}{\frac{\left(2ab+ca+cb\right)^{2}}{a^{2}+4ab+b^{2}}+\frac{\left(2bc+ab+ac\right)^{2}}{b^{2}+4bc+c^{2}}+\frac{\left(2ca+bc+ba\right)^{2}}{c^{2}+4ca+a^{2}}\ge \frac{8(ab+bc+ca)}{3}.}$$
2 replies
KhuongTrang
Apr 24, 2025
NguyenVanHoa29
Apr 29, 2025
Non-negative real variables inequality
G H J
G H BBookmark kLocked kLocked NReply
Source: own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#1 • 3 Y
Y by math90, NguyenVanHoa29, Zuyong
Problem. Let $a,b,c\ge 0: ab+bc+ca>0.$ Prove that$$\color{blue}{\frac{\left(2ab+ca+cb\right)^{2}}{a^{2}+4ab+b^{2}}+\frac{\left(2bc+ab+ac\right)^{2}}{b^{2}+4bc+c^{2}}+\frac{\left(2ca+bc+ba\right)^{2}}{c^{2}+4ca+a^{2}}\ge \frac{8(ab+bc+ca)}{3}.}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Quantum-Phantom
272 posts
#2
Y by
Are there any easier methods?

After multiplying both sides by \(\prod\limits_{\rm cyc}\left(a^2+4ab+b^2\right)\), we need to show that
\[\frac13\sum_{\rm cyc}a^2b^2(a+3b)(3a+b)(a-b)^2+abc\cdot f(a,b,c)\ge0,\]where $f(a,b,c)$ is a fifth degree polynomial:
\[\sum_{\rm cyc}\left(2a^5+\frac83a^4b+\frac83ab^4+\frac{22}3a^2b^2c-\frac{14}3a^3b^2-\frac{14}3a^2b^3-\frac{16}3a^2b^2c\right).\]By the $uvw$ method, it is not hard to show that $f(a,b,c)\ge0$ is true.

Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NguyenVanHoa29
7 posts
#3 • 1 Y
Y by arqady
I think it is a concave function according to w^3 and the rest is easy checking.
Z K Y
N Quick Reply
G
H
=
a