Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Converse of a classic orthocenter problem
spartacle   43
N 5 minutes ago by ihategeo_1969
Source: USA TSTST 2020 Problem 6
Let $A$, $B$, $C$, $D$ be four points such that no three are collinear and $D$ is not the orthocenter of $ABC$. Let $P$, $Q$, $R$ be the orthocenters of $\triangle BCD$, $\triangle CAD$, $\triangle ABD$, respectively. Suppose that the lines $AP$, $BQ$, $CR$ are pairwise distinct and are concurrent. Show that the four points $A$, $B$, $C$, $D$ lie on a circle.

Andrew Gu
43 replies
spartacle
Dec 14, 2020
ihategeo_1969
5 minutes ago
Symmetric points part 2
CyclicISLscelesTrapezoid   22
N 6 minutes ago by ihategeo_1969
Source: USA TSTST 2022/6
Let $O$ and $H$ be the circumcenter and orthocenter, respectively, of an acute scalene triangle $ABC$. The perpendicular bisector of $\overline{AH}$ intersects $\overline{AB}$ and $\overline{AC}$ at $X_A$ and $Y_A$ respectively. Let $K_A$ denote the intersection of the circumcircles of triangles $OX_AY_A$ and $BOC$ other than $O$.

Define $K_B$ and $K_C$ analogously by repeating this construction two more times. Prove that $K_A$, $K_B$, $K_C$, and $O$ are concyclic.

Hongzhou Lin
22 replies
CyclicISLscelesTrapezoid
Jun 27, 2022
ihategeo_1969
6 minutes ago
Periodicity of factorials
Cats_on_a_computer   0
24 minutes ago
Source: Thrill and challenge of pre-college mathematics
Let a_k denote the first non zero digit of the decimal representation of k!. Does the sequence a_1, a_2, a_3, … eventually become periodic?
0 replies
Cats_on_a_computer
24 minutes ago
0 replies
Cyclic Quad. and Intersections
Thelink_20   11
N 34 minutes ago by americancheeseburger4281
Source: My Problem
Let $ABCD$ be a quadrilateral inscribed in a circle $\Gamma$. Let $AC\cap BD=E$, $AB\cap CD=F$, $(AEF)\cap\Gamma=X$, $(BEF)\cap\Gamma=Y$, $(CEF)\cap\Gamma=Z$, $(DEF)\cap\Gamma=W$, $XZ\cap YW=M$, $XY\cap ZW=N$. Prove that $MN$ lies over $EF$.
11 replies
1 viewing
Thelink_20
Oct 29, 2024
americancheeseburger4281
34 minutes ago
No more topics!
2013 China girls' Mathematical Olympiad problem 7
s372102   5
N Apr 24, 2025 by Nari_Tom
As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.
5 replies
s372102
Aug 13, 2013
Nari_Tom
Apr 24, 2025
2013 China girls' Mathematical Olympiad problem 7
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
s372102
142 posts
#1 • 2 Y
Y by Adventure10, Mango247
As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Luis González
4149 posts
#2 • 4 Y
Y by Adventure10, Mango247, and 2 other users
Let $TB,TC$ cut $\odot O_2$ again at $B',C'.$ Since $T$ is the exsimilicenter of $\odot O_1 \sim \odot O_2,$ then $B'C' \parallel BCF$ $\Longrightarrow$ $F$ is midpoint of the arc $B'TC'$ of $\odot O_2$ $\Longrightarrow$ $TF \equiv TM$ bisects $\angle B'TC' \equiv \angle BTC$ externally $\Longrightarrow$ $M$ is midpoint of the arc $BTC$ of $\odot O_1$ $\Longrightarrow$ $AM$ is external bisector of $\angle BAC$ and $MB=MC.$

Note that $\odot O_2$ is a Thebault circle of the cevian $AD$ of $\triangle ABC$ externally tangent to its circumcircle $\odot O_1.$ By Sawayama's lemma $EF$ passes through its C-excenter $\Longrightarrow$ $N$ is C-excenter of $\triangle ABC$ $\Longrightarrow$ $N \in AM.$ $\angle BNA=90^{\circ}-\frac{_1}{^2}\angle ACB=90^{\circ}-\frac{_1}{^2}\angle BMN$ $\Longrightarrow$ $\triangle BMN$ is M-isosceles, i.e. $MB=MN.$ Hence $MB=MC=MN$ $\Longrightarrow$ $M$ is circumcenter of $\triangle BCN.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Andrew64
33 posts
#3 • 2 Y
Y by Adventure10, Mango247
s372102 wrote:
As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.

As shown in the figure.

Let $N$ be the intersection of $AM$ and $EF$.


It's fairly obvious

$\angle FET = \angle TFK =\angle TBM =   \angle TCM  = \angle TAM$

So we have

$    \angle CBM =  \angle CTM = \angle BTF =   \angle BCM $
$MB^2=MB\times MF$, and $A,E,N,T$ are concyclic.

So
$MC=MB$, and
$  \angle MNT = \angle TEA =   \angle MFN$

Thus
$MN^2= MT\times MF $,
Consequently
$MB=MC=MN$.

$  \angle ABN = \angle ABM +   \angle MBN$
$= \angle ABM + \frac{180-  \angle BMN}{2}$
$=\angle ABM +90 - \frac{\angle BCA}{2}$
$=  \angle ABM + 90-\frac { \angle BCM}{2} -\frac{ \angle ACM }{2}$
$=\frac{\angle CMB}{2} +\frac{\angle BCM}{2}+ \frac{\angle ACM}{2}$
$=  \frac{\angle CAB}{2} +\frac{\angle BCA}{2}$
$=\frac{\angle ABF}{2}$

Namely $AN$ is the bisector of $  \angle ABF $.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mahdi_Mashayekhi
698 posts
#4
Y by
Let AM meet EF at N'. we will prove N' is N.
Claim1 : M is center of BCN'.
Proof : Let BT meet $\odot O_2$ at B' and CT meet at C'. B'C' || BC so ∠C'B'F = ∠B'FB = ∠FC'B' so F is midpoint of arc C'B'T Note that FT meets $\odot O_1$ at M so M is midpoint of arc CBT so MB = MC. ∠N'ET = ∠TFB = ∠TAM so ATN'E is cyclic. ∠TN'M = ∠TEA = ∠TFN' so MN'^2 = MT.MF = MB^2 so MC = MB = MN'.

Claim2 : BN' is angle bisector of ABF.
Proof : ∠ABN' = ∠ABM + 90 - ∠BMN'/2 = ∠ABM + 90 - ∠BCA/2 = ∠ABM + 90 - ∠BCM/2 - ∠ABM/2 = ∠ABM/2 + 90 - ∠CBM/2 = ∠ABM/2 + 90 - ∠CBA/2 - ∠ABM/2 = 90 - ∠CBA/2.

we're Done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30653 posts
#5
Y by
As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.
https://cdn.artofproblemsolving.com/attachments/9/f/932b507f4eee3e1b4c6dac51c1b3f431398322.jpg
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nari_Tom
117 posts
#6
Y by
So problem is solvable using only angle chase huh, i had no idea about that. By the way using Sawayama lemma trivialized the problem, nice solution Luis Gonzalez.

Anyway $MB=MC$ part is pure angle chase. After that problem can be viewed as following problem.

Let $ABC$ be the triangle and $I_A$ be the A-excenter. Let $T$ be arbitrary point on the $(ABC)$. Let $\omega$ be the circle tangent to $AB$ and $(ABC)$ externally at $P$ and $T$, respectively. Let $Q=PI_A \cap \omega$. Then prove that $CQ$ is tangent to $\omega$. (Since Luis Gonzalez solved this problem, i wont solve it directly. Instead let's use bc-inversion and see what happens)

Let $ABC$ be a triangle and $I$ be it's incenter. $\omega$ be the circles tangent to $AB$ and $BC$ at $P$ and $T$, respectively. $Q=(AIP) \cap \omega$, prove that $\omega$ and $(AQC)$ are tangent.

Proof: By an easy angle chase $CIQT$ is cyclic. Then our desired tangency is equivalent of proving $\angle ACQ+ \angle QTP=\angle AQP$. It's clear since $\angle ACQ+\angle QTP=\angle ACI-\angle QCI+\angle QTP=\angle ACI+\angle QTP-\angle QTI=\angle ACI+\angle ITP$. So we need to prove that $\angle ACI+\angle ITP=\angle AIP$, which is equivalent of saying $(ACI)$ and $(PIT)$ are tangent. It's clear because of the symmetry.
Z K Y
N Quick Reply
G
H
=
a