Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Isogonal Conjugates of Nagel and Gergonne Point
SerdarBozdag   4
N 26 minutes ago by zuat.e
Source: http://math.fau.edu/yiu/Oldwebsites/Geometry2013Fall/Geometry2013Chapter12.pdf
Proposition 12.1.
(a) The isogonal conjugate of the Gergonne point is the insimilicenter of
the circumcircle and the incircle.
(b) The isogonal conjugate of the Nagel point is the exsimilicenter of the circumcircle and
the incircle.
Note: I need synthetic solution.
4 replies
SerdarBozdag
Apr 17, 2021
zuat.e
26 minutes ago
Compact powers of 2
NO_SQUARES   1
N 31 minutes ago by Isolemma
Source: 239 MO 2025 8-9 p3 = 10-11 p2
Let's call a power of two compact if it can be represented as the sum of no more than $10^9$ not necessarily distinct factorials of positive integer numbers. Prove that the set of compact powers of two is finite.
1 reply
NO_SQUARES
May 5, 2025
Isolemma
31 minutes ago
Cute NT Problem
M11100111001Y1R   4
N 39 minutes ago by RANDOM__USER
Source: Iran TST 2025 Test 4 Problem 1
A number \( n \) is called lucky if it has at least two distinct prime divisors and can be written in the form:
\[
n = p_1^{\alpha_1} + \cdots + p_k^{\alpha_k}
\]where \( p_1, \dots, p_k \) are distinct prime numbers that divide \( n \). (Note: it is possible that \( n \) has other prime divisors not among \( p_1, \dots, p_k \).) Prove that for every prime number \( p \), there exists a lucky number \( n \) such that \( p \mid n \).
4 replies
M11100111001Y1R
Today at 7:20 AM
RANDOM__USER
39 minutes ago
USAMO 2003 Problem 4
MithsApprentice   72
N an hour ago by endless_abyss
Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.
72 replies
MithsApprentice
Sep 27, 2005
endless_abyss
an hour ago
Easy but unusual junior ineq
Maths_VC   1
N an hour ago by blug
Source: Serbia JBMO TST 2025, Problem 2
Real numbers $x, y$ $\ge$ $0$ satisfy $1$ $\le$ $x^2 + y^2$ $\le$ $5$. Determine the minimal and the maximal value of the expression $2x + y$
1 reply
Maths_VC
2 hours ago
blug
an hour ago
Bosnia and Herzegovina JBMO TST 2009 Problem 1
gobathegreat   1
N an hour ago by FishkoBiH
Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2009
Lengths of sides of triangle $ABC$ are positive integers, and smallest side is equal to $2$. Determine the area of triangle $P$ if $v_c = v_a + v_b$, where $v_a$, $v_b$ and $v_c$ are lengths of altitudes in triangle $ABC$ from vertices $A$, $B$ and $C$, respectively.
1 reply
gobathegreat
Sep 17, 2018
FishkoBiH
an hour ago
USAMO 2001 Problem 2
MithsApprentice   53
N an hour ago by lksb
Let $ABC$ be a triangle and let $\omega$ be its incircle. Denote by $D_1$ and $E_1$ the points where $\omega$ is tangent to sides $BC$ and $AC$, respectively. Denote by $D_2$ and $E_2$ the points on sides $BC$ and $AC$, respectively, such that $CD_2=BD_1$ and $CE_2=AE_1$, and denote by $P$ the point of intersection of segments $AD_2$ and $BE_2$. Circle $\omega$ intersects segment $AD_2$ at two points, the closer of which to the vertex $A$ is denoted by $Q$. Prove that $AQ=D_2P$.
53 replies
MithsApprentice
Sep 30, 2005
lksb
an hour ago
A=b
k2c901_1   89
N an hour ago by reni_wee
Source: Taiwan 1st TST 2006, 1st day, problem 3
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.

Proposed by Mohsen Jamali, Iran
89 replies
k2c901_1
Mar 29, 2006
reni_wee
an hour ago
Strange angle condition and concyclic points
lminsl   129
N an hour ago by Aiden-1089
Source: IMO 2019 Problem 2
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.

Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.

Proposed by Anton Trygub, Ukraine
129 replies
lminsl
Jul 16, 2019
Aiden-1089
an hour ago
Simple inequality
sqing   12
N an hour ago by Rayvhs
Source: MEMO 2018 T1
Let $a,b$ and $c$ be positive real numbers satisfying $abc=1.$ Prove that$$\frac{a^2-b^2}{a+bc}+\frac{b^2-c^2}{b+ca}+\frac{c^2-a^2}{c+ab}\leq a+b+c-3.$$
12 replies
sqing
Sep 2, 2018
Rayvhs
an hour ago
Random concyclicity in a square config
Maths_VC   2
N 2 hours ago by Maths_VC
Source: Serbia JBMO TST 2025, Problem 1
Let $M$ be a random point on the smaller arc $AB$ of the circumcircle of square $ABCD$, and let $N$ be the intersection point of segments $AC$ and $DM$. The feet of the tangents from point $D$ to the circumcircle of the triangle $OMN$ are $P$ and $Q$ , where $O$ is the center of the square. Prove that points $A$, $C$, $P$ and $Q$ lie on a single circle.
2 replies
Maths_VC
2 hours ago
Maths_VC
2 hours ago
Serbian selection contest for the IMO 2025 - P3
OgnjenTesic   3
N 2 hours ago by atdaotlohbh
Source: Serbian selection contest for the IMO 2025
Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that:
- $f$ is strictly increasing,
- there exists $M \in \mathbb{N}$ such that $f(x+1) - f(x) < M$ for all $x \in \mathbb{N}$,
- for every $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that
\[
            f(y) = \frac{f(x) + f(x + 2024)}{2}.
        \]Proposed by Pavle Martinović
3 replies
OgnjenTesic
May 22, 2025
atdaotlohbh
2 hours ago
Easy P4 combi game with nt flavour
Maths_VC   0
2 hours ago
Source: Serbia JBMO TST 2025, Problem 4
Two players, Alice and Bob, play the following game, taking turns. In the beginning, the number $1$ is written on the board. A move consists of adding either $1$, $2$ or $3$ to the number written on the board, but only if the chosen number is coprime with the current number (for example, if the current number is $10$, then in a move a player can't choose the number $2$, but he can choose either $1$ or $3$). The player who first writes a perfect square on the board loses. Prove that one of the players has a winning strategy and determine who wins in the game.
0 replies
Maths_VC
2 hours ago
0 replies
USAMO 2003 Problem 1
MithsApprentice   70
N 2 hours ago by endless_abyss
Prove that for every positive integer $n$ there exists an $n$-digit number divisible by $5^n$ all of whose digits are odd.
70 replies
MithsApprentice
Sep 27, 2005
endless_abyss
2 hours ago
Apple sharing in Iran
mojyla222   3
N Apr 23, 2025 by math-helli
Source: Iran 2025 second round p6
Ali is hosting a large party. Together with his $n-1$ friends, $n$ people are seated around a circular table in a fixed order. Ali places $n$ apples for serving directly in front of himself and wants to distribute them among everyone. Since Ali and his friends dislike eating alone and won't start unless everyone receives an apple at the same time, in each step, each person who has at least one apple passes one apple to the first person to their right who doesn't have an apple (in the clockwise direction).

Find all values of $n$ such that after some number of steps, the situation reaches a point where each person has exactly one apple.
3 replies
mojyla222
Apr 20, 2025
math-helli
Apr 23, 2025
Apple sharing in Iran
G H J
G H BBookmark kLocked kLocked NReply
Source: Iran 2025 second round p6
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mojyla222
103 posts
#1 • 1 Y
Y by sami1618
Ali is hosting a large party. Together with his $n-1$ friends, $n$ people are seated around a circular table in a fixed order. Ali places $n$ apples for serving directly in front of himself and wants to distribute them among everyone. Since Ali and his friends dislike eating alone and won't start unless everyone receives an apple at the same time, in each step, each person who has at least one apple passes one apple to the first person to their right who doesn't have an apple (in the clockwise direction).

Find all values of $n$ such that after some number of steps, the situation reaches a point where each person has exactly one apple.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
YaoAOPS
1541 posts
#2 • 2 Y
Y by sami1618, jannatiar
Very nice problem. Sketch I will clean up later:

$n$ which are powers of $2$ work inductively as it goes from $2^k$ to two copies $2^{k-1}$ which are apart, this decays into all ones.

$n$ which are equal to $2^k + r$ turn into a $2^k$ and $r$ component with $2^k - 1$ and $r - 1$ zeros before them. The $2^k$ acts like an inch worm which jumps every $2^k$ so it can't ever hit the $r$ from one direction. The $r = 2^a + s$ decays the same way so we can finish inductively to get that it never is all ones. Thus this ends up becoming $2^i$ inch worms in different states which never have the same all $1$ time which gives the result.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sami1618
915 posts
#3 • 1 Y
Y by jannatiar
Answer: $n=2^k$ for all non-negative integers $k$.

Solution: We will show that if $n$ is a power of $2$ then eventually each person will have exactly one apple, and if $n$ is not a power of $2$ this will not happen.

Assume that $n=2^k$. We claim that after $2^k-1$ steps, everyone will have exactly one apple. We proceed by induction on $k$. The base case $k=0$ is trivial. For the induction step, assume that the result holds for $k$ and we will show it holds for $k+1$. Notice that for each of the first $n-1$ steps the range of people that have an apple will expand by one in the clockwise direction. Thus no apple will make its way around the circle in the first $n-1$ moves, so we can imagine "cutting" the circle to the left of Ali and only considering the passing in straight line. By the inductive hypothesis, after $2^k-1$ moves, Ali will be left with $2^k+1$ apples, the $2^k-1$ friends to the right of Ali will have exactly $1$ apple, and no one else has apples yet. After $1$ more step, Ali will be left with $2^k$ apples, the friend $2^k$ spots to the right of Ali will also have $2^k$ apples, and no one else will have apples. Thus by the inductive step, after another $2^k-1$ steps all $2^{k+1}$ people will have exactly $1$ apple. This completes this part of the solution.

Now we prove two claims.

Claim 1. All such $n\neq 1$ are even.
Proof. Assume $n\neq 1$ works. Consider the situation one step before everyone gets an apple. Everybody having at least one apple must have exactly $2$ apples in order to end up with just $1$ apple after the step. Then $2|n$, as claimed.

Claim 2. If $n=2k$ works, then $n=k$ also works.
Proof. Consider the party with $n=2k$ people. Let $A$ denote the set of $k$ people which are an even number of seats away from Ali and let $B$ denote the set of the other $k$ people. We claim that after every two steps, only the people in $A$ will have apples, and each of them will have an even number of them. Additionally, the people in $A$ function as a party of $k$ people where every two steps it is as if they pass with $2$ apples instead of $1$. Notice that this is true from the beginning. Now consider a person in $A$ that has no apples and is adjacent (to the left) to a block of friends in $A$ with apples. After the first step all the people in $B$ in front of a person from the block will receive $1$ apple. The person to the left of the block still does not have an apple so after the second move all the apples received by people in $B$ plus one additional apple from each person from the block of friends in $A$ will go to the person in consideration. Thus effectively, after two steps, the people in $B$ just helped "passing" the apples and returned to having no apples, while the people in $A$ functioned as a sub-party with $k$ people and twice as many apples. This only stops when everyone in $A$ has exactly $2$ apples, in which case we can not consider a person in $A$ that has no apples and thus after one more step, everyone will have an apple. But by examining our sub-party, this means that $n=k$ must also work, as claimed.

Now if $n$ is not a power of $2$, then express $n$ as $2^k\cdot m$ for a non-negative integer $k$ and an odd integer $m\geq 3$. By Claim 2, if $n$ works then $m$ must also work. But by Claim 1, this is a contradiction, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math-helli
13 posts
#4
Y by
Here you can find some solutions
https://t.me/matholampiad123
Z K Y
N Quick Reply
G
H
=
a