Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Linearity in a specific function
youochange   2
N a minute ago by youochange
$f(x-c)+c=f(x)$ $and f:\mathbb Z \to \mathbb Z$

Does this mean f(x) is linear?
2 replies
youochange
18 minutes ago
youochange
a minute ago
Serbian selection contest for the BMO 2025 - P1
OgnjenTesic   3
N 7 minutes ago by EeEeRUT
Given is triangle $ABC$ with centroid $T$, such that $\angle BAC + \angle BTC = 180^\circ$. Let $G$ and $H$ be the second points of intersection of lines $CT$ and $BT$ with the circumcircle of triangle $ABC$, respectively. Prove that the line $GH$ is tangent to the Euler circle of triangle $ABC$.

Proposed by Andrija Živadinović
3 replies
OgnjenTesic
Apr 7, 2025
EeEeRUT
7 minutes ago
Hard combi
EeEApO   8
N 38 minutes ago by navier3072
In a quiz competition, there are a total of $100 $questions, each with $4$ answer choices. A participant who answers all questions correctly will receive a gift. To ensure that at least one member of my family answers all questions correctly, how many family members need to take the quiz?

Now, suppose my spouse and I move into a new home. Every year, we have twins. Starting at the age of $16$, each of our twin children also begins to have twins every year. If this pattern continues, how many years will it take for my family to grow large enough to have the required number of members to guarantee winning the quiz gift?
8 replies
EeEApO
May 8, 2025
navier3072
38 minutes ago
Reflections of AB, AC with respect to BC and angle bisector of A
falantrng   29
N 41 minutes ago by cursed_tangent1434
Source: BMO 2024 Problem 1
Let $ABC$ be an acute-angled triangle with $AC > AB$ and let $D$ be the foot of the
$A$-angle bisector on $BC$. The reflections of lines $AB$ and $AC$ in line $BC$ meet $AC$ and $AB$ at points
$E$ and $F$ respectively. A line through $D$ meets $AC$ and $AB$ at $G$ and $H$ respectively such that $G$
lies strictly between $A$ and $C$ while $H$ lies strictly between $B$ and $F$. Prove that the circumcircles of
$\triangle EDG$ and $\triangle FDH$ are tangent to each other.
29 replies
falantrng
Apr 29, 2024
cursed_tangent1434
41 minutes ago
JBMO Combinatorics vibes
Sadigly   1
N 44 minutes ago by Royal_mhyasd
Source: Azerbaijan Senior NMO 2018
Numbers $1,2,3...,100$ are written on a board. $A$ and $B$ plays the following game: They take turns choosing a number from the board and deleting them. $A$ starts first. They sum all the deleted numbers. If after a player's turn (after he deletes a number on the board) the sum of the deleted numbers can't be expressed as difference of two perfect squares,then he loses, if not, then the game continues as usual. Which player got a winning strategy?
1 reply
Sadigly
Yesterday at 9:53 PM
Royal_mhyasd
44 minutes ago
line JK of intersection points of 2 lines passes through the midpoint of BC
parmenides51   3
N an hour ago by cursed_tangent1434
Source: Rioplatense Olympiad 2018 level 3 p4
Let $ABC$ be an acute triangle with $AC> AB$. be $\Gamma$ the circumcircle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smallest arc $BC$ of this circle. Let $E$ and $F$ points of the segments $AB$ and $AC$ respectively such that $AE = AF$. Let $P \neq A$ be the second intersection point of the circumcircle circumscribed to $AEF$ with $\Gamma$. Let $G$ and $H$ be the intersections of lines $PE$ and $PF$ with $\Gamma$ other than $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines $AB$ and $AC$ respectively. Show that the $JK$ line passes through the midpoint of $BC$
3 replies
1 viewing
parmenides51
Dec 11, 2018
cursed_tangent1434
an hour ago
Six variables
Nguyenhuyen_AG   2
N an hour ago by arqady
Let $a,\,b,\,c,\,x,\,y,\,z$ be six positive real numbers. Prove that
$$\frac{a}{b+c} \cdot \frac{y+z}{x} + \frac{b}{c+a} \cdot \frac{z+x}{y} + \frac{c}{a+b} \cdot \frac{x+y}{z} \geqslant 2+\sqrt{\frac{8abc}{(a+b)(b+c)(c+a)}}.$$
2 replies
Nguyenhuyen_AG
Yesterday at 5:09 AM
arqady
an hour ago
Brilliant guessing game on triples
Assassino9931   2
N an hour ago by Mirjalol
Source: Al-Khwarizmi Junior International Olympiad 2025 P8
There are $100$ cards on a table, flipped face down. Madina knows that on each card a single number is written and that the numbers are different integers from $1$ to $100$. In a move, Madina is allowed to choose any $3$ cards, and she is told a number that is written on one of the chosen cards, but not which specific card it is on. After several moves, Madina must determine the written numbers on as many cards as possible. What is the maximum number of cards Madina can ensure to determine?

Shubin Yakov, Russia
2 replies
Assassino9931
Saturday at 9:46 AM
Mirjalol
an hour ago
ISI UGB 2025 P5
SomeonecoolLovesMaths   4
N an hour ago by Shiny_zubat
Source: ISI UGB 2025 P5
Let $a,b,c$ be nonzero real numbers such that $a+b+c \neq 0$. Assume that $$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$$Show that for any odd integer $k$, $$\frac{1}{a^k} + \frac{1}{b^k} + \frac{1}{c^k} = \frac{1}{a^k+b^k+c^k}.$$
4 replies
SomeonecoolLovesMaths
Yesterday at 11:15 AM
Shiny_zubat
an hour ago
ISI UGB 2025 P2
SomeonecoolLovesMaths   6
N an hour ago by quasar_lord
Source: ISI UGB 2025 P2
If the interior angles of a triangle $ABC$ satisfy the equality, $$\sin ^2 A + \sin ^2 B + \sin^2  C = 2 \left( \cos ^2 A + \cos ^2 B + \cos ^2 C \right),$$prove that the triangle must have a right angle.
6 replies
SomeonecoolLovesMaths
Yesterday at 11:16 AM
quasar_lord
an hour ago
ISI UGB 2025 P6
SomeonecoolLovesMaths   3
N an hour ago by Shiny_zubat
Source: ISI UGB 2025 P6
Let $\mathbb{N}$ denote the set of natural numbers, and let $\left( a_i, b_i \right)$, $1 \leq i \leq 9$, be nine distinct tuples in $\mathbb{N} \times \mathbb{N}$. Show that there are three distinct elements in the set $\{ 2^{a_i} 3^{b_i} \colon 1 \leq i \leq 9 \}$ whose product is a perfect cube.
3 replies
SomeonecoolLovesMaths
Yesterday at 11:18 AM
Shiny_zubat
an hour ago
Shortest number theory you might've seen in your life
AlperenINAN   5
N an hour ago by Royal_mhyasd
Source: Turkey JBMO TST 2025 P4
Let $p$ and $q$ be prime numbers. Prove that if $pq(p+1)(q+1)$ is a perfect square, then $pq + 1$ is also a perfect square.
5 replies
AlperenINAN
Yesterday at 7:51 PM
Royal_mhyasd
an hour ago
d+2 pts in R^d can partition
EthanWYX2009   0
3 hours ago
Source: Radon's Theorem
Show that: any set of $d + 2$ points in $\mathbb R^d$ can be partitioned into two sets whose convex hulls intersect.
0 replies
EthanWYX2009
3 hours ago
0 replies
hard inequality omg
tokitaohma   4
N 3 hours ago by arqady
1. Given $a, b, c > 0$ and $abc=1$
Prove that: $ \sqrt{a^2+1} + \sqrt{b^2+1} + \sqrt{c^2+1} \leq \sqrt{2}(a+b+c) $

2. Given $a, b, c > 0$ and $a+b+c=1 $
Prove that: $ \dfrac{\sqrt{a^2+2ab}}{\sqrt{b^2+2c^2}} + \dfrac{\sqrt{b^2+2bc}}{\sqrt{c^2+2a^2}} + \dfrac{\sqrt{c^2+2ca}}{\sqrt{a^2+2b^2}} \geq \dfrac{1}{a^2+b^2+c^2} $
4 replies
tokitaohma
Yesterday at 5:24 PM
arqady
3 hours ago
Perfect polynomials
Phorphyrion   5
N Apr 24, 2025 by Davdav1232
Source: 2023 Israel TST Test 5 P3
Given a polynomial $P$ and a positive integer $k$, we denote the $k$-fold composition of $P$ by $P^{\circ k}$. A polynomial $P$ with real coefficients is called perfect if for each integer $n$ there is a positive integer $k$ so that $P^{\circ k}(n)$ is an integer. Is it true that for each perfect polynomial $P$, there exists a positive $m$ so that for each integer $n$ there is $0<k\leq m$ for which $P^{\circ k}(n)$ is an integer?
5 replies
Phorphyrion
Mar 23, 2023
Davdav1232
Apr 24, 2025
Perfect polynomials
G H J
Source: 2023 Israel TST Test 5 P3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Phorphyrion
397 posts
#1
Y by
Given a polynomial $P$ and a positive integer $k$, we denote the $k$-fold composition of $P$ by $P^{\circ k}$. A polynomial $P$ with real coefficients is called perfect if for each integer $n$ there is a positive integer $k$ so that $P^{\circ k}(n)$ is an integer. Is it true that for each perfect polynomial $P$, there exists a positive $m$ so that for each integer $n$ there is $0<k\leq m$ for which $P^{\circ k}(n)$ is an integer?
This post has been edited 1 time. Last edited by Phorphyrion, Apr 5, 2023, 1:48 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
R8kt
303 posts
#2
Y by
Bumpbump
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CahitArf
80 posts
#3
Y by
The answer is negative.
Attachments:
Israel Tst 2023 Day 5 P3.pdf (247kb)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dendimon18
21 posts
#4
Y by
CahitArf wrote:
The answer is negative.

You'r polynomial doesn't satisfy the condition as $P(-1)=\frac{3}{2}$ and $\frac{3}{2}$ is a fixed point.
The general idea is correct though.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CahitArf
80 posts
#5
Y by
dendimon18 wrote:
CahitArf wrote:
The answer is negative.

You'r polynomial doesn't satisfy the condition as $P(-1)=\frac{3}{2}$ and $\frac{3}{2}$ is a fixed point.
The general idea is correct though.

Sorry for that , i totally forgot n can be negative ,too.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Davdav1232
43 posts
#6
Y by
\textbf{Claim:} For all integers \( n \), there exists a positive integer \( k \) such that the \( k \)-fold composition of the function
\[
P(x) = \frac{4x^3 + 6x^2 + 10x + 3}{2}
\]evaluated at \( n \) is an integer.


P also satisfies this:
\[
P\left(\frac{n-1}{2}\right) = \frac{n(n^2 + 7)}{4} - \frac{1}{2}.
\]
Assume that \( P(n) \notin \mathbb{Z} \). Then \( P(n) \) must be a half-integer, i.e., \( P(n) = \frac{m}{2} \) for some odd integer \( m \).

Consider the sequence:
\[
2P(n) + 1,\quad 2P(P(n)) + 1,\quad 2P(P(P(n))) + 1, \ldots
\]
We claim that this sequence is entirely composed of integers. Furthermore, using the identity above, each term is mapped under the operation:
\[
m \mapsto (m^3 + 7m)/2.
\]Hence, the sequence follows the recurrence:
\[
a_{i+1} = (a_i^3 + 7a_i)/2.
\]
We now show that this sequence eventually reaches an odd integer. Observe that if \( m \) is even and nonzero, then
\[
v_2((m^3 + 7m)/2) = v_2(m) - 1,
\]where \( v_2(\cdot) \) denotes the 2-adic valuation. That is, each iteration reduces the 2-adic valuation by 1. Therefore, after exactly \( v_2(2P(n) + 1) \) steps, the resulting term in the sequence will be odd. Since the input to \( P \) at that point is an integer, and \( P(\text{integer}) \in \mathbb{Z} \) for odd inputs, the composition \( P^{\circ k}(n) \in \mathbb{Z} \).

\bigskip

Two remaining concerns:
\begin{enumerate}
\item Ensure \( 2P(n) + 1 \neq 0 \).
\item Find \( n \) such that the minimal \( k \) required is unbounded.
\end{enumerate}

For the first concern, suppose \( n \) is odd. Then from the identity:
\[
2P\left(\frac{n-1}{2}\right) + 1 = n(n^2 + 7),
\]we note that \( n(n^2 + 7) \neq 0 \) for odd \( n \), hence \( 2P(n) + 1 \neq 0 \).

For the second concern, we want \( v_2(2P(n) + 1) \) to be unbounded. Again using the identity:
\[
2P\left(\frac{n-1}{2}\right) + 1 = n(n^2 + 7),
\]we seek odd \( n \) such that \( v_2(n(n^2 + 7)) \) is arbitrarily large. It is known that \( -7 \) is a quadratic residue modulo any power of 2, so there exist such \( n \) with arbitrarily large \( v_2 \)
This post has been edited 2 times. Last edited by Davdav1232, Apr 25, 2025, 7:39 PM
Z K Y
N Quick Reply
G
H
=
a