Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Indonesia Regional MO 2019 Part A
parmenides51   21
N 7 minutes ago by chinawgp
Indonesia Regional MO
Year 2019 Part A

Time: 90 minutes Rules


p1. In the bag there are $7$ red balls and $8$ white balls. Audi took two balls at once from inside the bag. The chance of taking two balls of the same color is ...


p2. Given a regular hexagon with a side length of $1$ unit. The area of the hexagon is ...


p3. It is known that $r, s$ and $1$ are the roots of the cubic equation $x^3 - 2x + c = 0$. The value of $(r-s)^2$ is ...


p4. The number of pairs of natural numbers $(m, n)$ so that $GCD(n,m) = 2$ and $LCM(m,n) = 1000$ is ...


p5. A data with four real numbers $2n-4$, $2n-6$, $n^2-8$, $3n^2-6$ has an average of $0$ and a median of $9/2$. The largest number of such data is ...


p6. Suppose $a, b, c, d$ are integers greater than $2019$ which are four consecutive quarters of an arithmetic row with $a <b <c <d$. If $a$ and $d$ are squares of two consecutive natural numbers, then the smallest value of $c-b$ is ...


p7. Given a triangle $ABC$, with $AB = 6$, $AC = 8$ and $BC = 10$. The points $D$ and $E$ lies on the line segment $BC$. with $BD = 2$ and $CE = 4$. The measure of the angle $\angle DAE$ is ...


p8. Sequqnce of real numbers $a_1,a_2,a_3,...$ meet $\frac{na_1+(n-1)a_2+...+2a_{n-1}+a_n}{n^2}=1$ for each natural number $n$. The value of $a_1a_2a_3...a_{2019}$ is ....


p9. The number of ways to select four numbers from $\{1,2,3, ..., 15\}$ provided that the difference of any two numbers at least $3$ is ...


p10. Pairs of natural numbers $(m , n)$ which satisfies $$m^2n+mn^2 +m^2+2mn = 2018m + 2019n + 2019$$are as many as ...


p11. Given a triangle $ABC$ with $\angle ABC =135^o$ and $BC> AB$. Point $D$ lies on the side $BC$ so that $AB=CD$. Suppose $F$ is a point on the side extension $AB$ so that $DF$ is perpendicular to $AB$. The point $E$ lies on the ray $DF$ such that $DE> DF$ and $\angle ACE = 45^o$. The large angle $\angle AEC$ is ...


p12. The set of $S$ consists of $n$ integers with the following properties: For every three different members of $S$ there are two of them whose sum is a member of $S$. The largest value of $n$ is ....


p13. The minimum value of $\frac{a^2+2b^2+\sqrt2}{\sqrt{ab}}$ with $a, b$ positive reals is ....


p14. The polynomial P satisfies the equation $P (x^2) = x^{2019} (x+ 1) P (x)$ with $P (1/2)= -1$ is ....


p15. Look at a chessboard measuring $19 \times 19$ square units. Two plots are said to be neighbors if they both have one side in common. Initially, there are a total of $k$ coins on the chessboard where each coin is only loaded exactly on one square and each square can contain coins or blanks. At each turn. You must select exactly one plot that holds the minimum number of coins in the number of neighbors of the plot and then you must give exactly one coin to each neighbor of the selected plot. The game ends if you are no longer able to select squares with the intended conditions. The smallest number of $k$ so that the game never ends for any initial square selection is ....
21 replies
parmenides51
Nov 11, 2021
chinawgp
7 minutes ago
Geometry
German_bread   0
14 minutes ago
A semicircle k with radius r is constructed over the line segment ST. Let D be a point on the line segment ST that is different from S and T. The two squares ABCD and DEF G lie in the half-plane of the semicircle such that points B and F lie on the semicircle k and points S, C, D, E, and T lie on a straight line in that order. (Points A and/or G can also lie outside the semicircle if necessary.)
Investigate whether the sum of the areas of the squares ABCD and DEFG depends on the position of point D on the line segment ST.

German math olympiad, class 9, 2022
0 replies
German_bread
14 minutes ago
0 replies
Why is the old one deleted?
EeEeRUT   11
N an hour ago by Mathgloggers
Source: EGMO 2025 P1
For a positive integer $N$, let $c_1 < c_2 < \cdots < c_m$ be all positive integers smaller than $N$ that are coprime to $N$. Find all $N \geqslant 3$ such that $$\gcd( N, c_i + c_{i+1}) \neq 1$$for all $1 \leqslant i \leqslant m-1$

Here $\gcd(a, b)$ is the largest positive integer that divides both $a$ and $b$. Integers $a$ and $b$ are coprime if $\gcd(a, b) = 1$.

Proposed by Paulius Aleknavičius, Lithuania
11 replies
EeEeRUT
Apr 16, 2025
Mathgloggers
an hour ago
Congruence related perimeter
egxa   2
N 2 hours ago by LoloChen
Source: All Russian 2025 9.8 and 10.8
On the sides of triangle \( ABC \), points \( D_1, D_2, E_1, E_2, F_1, F_2 \) are chosen such that when going around the triangle, the points occur in the order \( A, F_1, F_2, B, D_1, D_2, C, E_1, E_2 \). It is given that
\[
AD_1 = AD_2 = BE_1 = BE_2 = CF_1 = CF_2.
\]Prove that the perimeters of the triangles formed by the triplets \( AD_1, BE_1, CF_1 \) and \( AD_2, BE_2, CF_2 \) are equal.
2 replies
egxa
Yesterday at 5:08 PM
LoloChen
2 hours ago
number theory
Levieee   7
N 2 hours ago by g0USinsane777
Idk where it went wrong, marks was deducted for this solution
$\textbf{Question}$
Show that for a fixed pair of distinct positive integers \( a \) and \( b \), there cannot exist infinitely many \( n \in \mathbb{Z} \) such that
\[
\sqrt{n + a} + \sqrt{n + b} \in \mathbb{Z}.
\]
$\textbf{Solution}$

Let
\[
x = \sqrt{n + a} + \sqrt{n + b} \in \mathbb{N}.
\]
Then,
\[
x^2 = (\sqrt{n + a} + \sqrt{n + b})^2 = (n + a) + (n + b) + 2\sqrt{(n + a)(n + b)}.
\]So:
\[
x^2 = 2n + a + b + 2\sqrt{(n + a)(n + b)}.
\]
Therefore,
\[
\sqrt{(n + a)(n + b)} \in \mathbb{N}.
\]
Let
\[
(n + a)(n + b) = k^2.
\]Assume \( n + a \neq n + b \). Then we have:
\[
n + a \mid k \quad \text{and} \quad k \mid n + b,
\]or it could also be that \( k \mid n + a \quad \text{and} \quad n + b \mid k \).

Without loss of generality, we take the first case:
\[
(n + a)k_1 = k \quad \text{and} \quad kk_2 = n + b.
\]
Thus,
\[
k_1 k_2 = \frac{n + b}{n + a}.
\]
Since \( k_1 k_2 \in \mathbb{N} \), we have:
\[
k_1 k_2 = 1 + \frac{b - a}{n + a}.
\]
For infinitely many \( n \), \( \frac{b - a}{n + a} \) must be an integer, which is not possible.

Therefore, there cannot be infinitely many such \( n \).
7 replies
Levieee
Yesterday at 7:46 PM
g0USinsane777
2 hours ago
inequalities proplem
Cobedangiu   4
N 2 hours ago by Mathzeus1024
$x,y\in R^+$ and $x+y-2\sqrt{x}-\sqrt{y}=0$. Find min A (and prove):
$A=\sqrt{\dfrac{5}{x+1}}+\dfrac{16}{5x^2y}$
4 replies
Cobedangiu
Yesterday at 11:01 AM
Mathzeus1024
2 hours ago
3 var inquality
sqing   0
2 hours ago
Source: Own
Let $ a,b,c $ be reals such that $ a+b+c=0 $ and $ abc\geq \frac{1}{\sqrt{2}} . $ Prove that
$$ a^2+b^2+c^2\geq 3$$Let $ a,b,c $ be reals such that $ a+2b+c=0 $ and $ abc\geq \frac{1}{\sqrt{2}} . $ Prove that
$$ a^2+b^2+c^2\geq \frac{3}{ \sqrt[3]{2}}$$$$ a^2+2b^2+c^2\geq 2\sqrt[3]{4} $$
0 replies
sqing
2 hours ago
0 replies
Combinatorics
TUAN2k8   0
2 hours ago
A sequence of integers $a_1,a_2,...,a_k$ is call $k-balanced$ if it satisfies the following properties:
$i) a_i \neq a_j$ and $a_i+a_j \neq 0$ for all indices $i \neq j$.
$ii) \sum_{i=1}^{k} a_i=0$.
Find the smallest integer $k$ for which: Every $k-balanced$ sequence, there always exist two terms whose diffence is not less than $n$. (where $n$ is given positive integer)
0 replies
TUAN2k8
2 hours ago
0 replies
pqr/uvw convert
Nguyenhuyen_AG   4
N 2 hours ago by SunnyEvan
Source: https://github.com/nguyenhuyenag/pqr_convert
Hi everyone,
As we know, the pqr/uvw method is a powerful and useful tool for proving inequalities. However, transforming an expression $f(a,b,c)$ into $f(p,q,r)$ or $f(u,v,w)$ can sometimes be quite complex. That's why I’ve written a program to assist with this process.
I hope you’ll find it helpful!

Download: pqr_convert

Screenshot:
IMAGE
IMAGE
4 replies
Nguyenhuyen_AG
Today at 3:39 AM
SunnyEvan
2 hours ago
A nice lemma about incircle and his internal tangent
manlio   0
2 hours ago
Have you a nice proof for this lemma?
Thnak you very much
0 replies
manlio
2 hours ago
0 replies
Nice problem about a trapezoid
manlio   0
2 hours ago
Have you a nice solution for this problem?
Thank you very much
0 replies
manlio
2 hours ago
0 replies
IHC 10 Q25: Eight countries participated in a football tournament
xytan0585   0
2 hours ago
Source: International Hope Cup Mathematics Invitational Regional Competition IHC10
Eight countries sent teams to participate in a football tournament, with the Argentine and Brazilian teams being the strongest, while the remaining six teams are similar strength. The probability of the Argentine and Brazilian teams winning against the other six teams is both $\frac{2}{3}$. The tournament adopts an elimination system, and the winner advances to the next round. What is the probability that the Argentine team will meet the Brazilian team in the entire tournament?

$A$. $\frac{1}{4}$

$B$. $\frac{1}{3}$

$C$. $\frac{23}{63}$

$D$. $\frac{217}{567}$

$E$. $\frac{334}{567}$
0 replies
xytan0585
2 hours ago
0 replies
New geometry problem
titaniumfalcon   4
N Apr 13, 2025 by titaniumfalcon
Post any solutions you have, with explanation or proof if possible, good luck!
4 replies
titaniumfalcon
Apr 3, 2025
titaniumfalcon
Apr 13, 2025
New geometry problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
titaniumfalcon
115 posts
#1
Y by
Post any solutions you have, with explanation or proof if possible, good luck!
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathprodigy2011
313 posts
#2
Y by
Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fruitmonster97
2477 posts
#3 • 1 Y
Y by titaniumfalcon
w problem :) @above is correct.
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathprodigy2011
313 posts
#4
Y by
fruitmonster97 wrote:
w problem :) @above is correct.
solution

bro this is so smart
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
titaniumfalcon
115 posts
#5
Y by
fruitmonster97 wrote:
w problem :) @above is correct.
solution

Thanks! This was my intended solution.
Z K Y
N Quick Reply
G
H
=
a