ka May Highlights and 2025 AoPS Online Class Information
jlacosta0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:
To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.
More specifically:
For new threads:
a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.
Examples: Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿) Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"
b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.
Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".
c) Good problem statement:
Some recent really bad post was:
[quote][/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.
For answers to already existing threads:
d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve , do not answer with " is a solution" only. Either you post any kind of proof or at least something unexpected (like " is the smallest solution). Someone that does not see that is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.
e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.
To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!
Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).
The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
Let triangle be an acute triangle with and let and be its orthocenter and circumcenter, respectively. Let be the circle . The line and the circle of radius centered at cross at and , respectively. Prove that , the circle on diameter and circle are concurrent. Proposed by Romania, Radu-Andrew Lecoiu
Find the smallest constant for which the following statement holds: among any five positive real numbers (not necessarily distinct), one can always choose distinct subscripts such that
Let be a triangle with circumcircle , incenter , and -excenter . Let the incircle and the -excircle hit at and , respectively, and let be the midpoint of arc without . Consider the circle tangent to at and arc at . If intersects again at , prove that and meet on .
line JK of intersection points of 2 lines passes through the midpoint of BC
parmenides514
Nan hour ago
by reni_wee
Source: Rioplatense Olympiad 2018 level 3 p4
Let be an acute triangle with . be the circumcircle circumscribed to the triangle and the midpoint of the smallest arc of this circle. Let and points of the segments and respectively such that . Let be the second intersection point of the circumcircle circumscribed to with . Let and be the intersections of lines and with other than , respectively. Let and be the intersection points of lines and with lines and respectively. Show that the line passes through the midpoint of
Source: All-Russian Olympiad 2019 grade 10 problem 4
Let be an acute-angled triangle with A circle passes through and and crosses the segments and again at and respectively. The circumcircles of and meet each other at points and The segments and intersect at Let and be the reflections of in the lines and respectively. Prove that the points and are concyclic.
Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2016
Let be a center of circle which passes through vertices of quadrilateral , which has perpendicular diagonals. Prove that sum of distances of point to sides of quadrilateral is equal to half of perimeter of .
Points on the sides of cyclic quadrilateral satisfy the angle conditions
AlperenINAN3
NToday at 3:13 PM
by Primeniyazidayi
Source: Turkey JBMO TST 2025 P1
Let be a cyclic quadrilateral and let the intersection point of lines and be . Let the points and be arbitrary points on sides and respectively, which satisfy the conditions Prove that .
Help me solve this problem please. Thank you so much!
illybest1
NToday at 2:25 PM
by GreekIdiot
Give two fixed points B and C, and point A moving on the circle (O). Let D be a point on (O) such that AD is perpendicular to BC. Let O' be the point symmetric to O with respect to BC, M be the midpoint of BC, and N ( dinstinct from D) be the intersection of MD with the circumcircle of triangle AOD. Suppose DO' intersects the circle (O) again at S.
a) Prove that the circle (OMN) is tangent to the circle (DNS)
b) Let d be the line tangent to (DNS) at N. Prove that d always passes through a fixed point when A moves along the arc BC of (O)
Consider a ball that moves inside an acute-angled triangle along a straight line, unit it hits the boundary, which is when it changes direction according to the mirror law, just like a ray of light (angle of incidence = angle of reflection). Prove that there exists a triangular periodic path for the ball, as pictured below.
is a pentagon whose vertices lie on circle where . Let and intersect at , meet at . is the midpoint of arc on , not containing . If holds, then what is the value of ?
Given triangle ABC, any line d intersects AB at D, intersects AC at E, intersects BC at F. Let O1,O2,O3 be the centers of the circles circumscribing triangles ADE, BDF, CFE. Prove that the orthocenter of triangle O1O2O3 lies on line d.
The answer is for any positive real , which clearly works. Now we show it's the only solution. Let be the given assertion.
Claim 1: is surjective.
Proof: Fix in the image of and let for some . Setting gives that is in the image of for all positive reals , which takes on all positive reals.
.
So by comparing and , we haveLet be this assertion.
For , is not positive (otherwise we could set equal to it and get from ), so if , then , and if , then . So if , then and if ,.
Thus, we have .
Since is surjective, means that for all positive reals .
Claim 2: for all .
Proof: Suppose for some . Setting gives that for . Setting arbitrarily close to gives a contradiction.
Claim 3: for all .
Proof: Suppose for some we had .
, soHowever, for any , we have , a contradiction by setting .
Now, we have by setting in claim 3 that , so combined with , we have . Now write . We have, and also for all .
Claim: for all positive reals
Proof: We already know that . If , then , absurd by claim 3.
For ,, soThis meansTherefore, , so , but since we already have , we have for each , so .
Now, in , fix to be any positive real number and large enough so that .
Let denote the assertion. From we get so . Thus is surjective.
Claim. is non-increasing. Proof. Comparing and yields so . If , then satisfies so , a contradiction. Thus for all .
For each , if , then all satisfies and all satisfies so is not in the range of , contradicting surjectivity. Hence . Clearly we must have , as otherwise a positive number arbitrarily close to would not be in the range of . Thus and so , as desired.