Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
SOLVE IN NATURAL
Pirkuliyev Rovsen   2
N 2 minutes ago by Assassino9931
Source: kolmogorov-2014
Solve in $ N$ the equation: $x{\cdot }y!+2y{\cdot }x!=z!$
2 replies
Pirkuliyev Rovsen
Sep 17, 2023
Assassino9931
2 minutes ago
Problem 3
blug   2
N 8 minutes ago by blug
Source: Czech-Polish-Slovak Junior Match 2025 Problem 3
In a triangle $ABC$, $\angle ACB=60^{\circ}$. Points $D, E$ lie on segments $BC, AC$ respectively. Points $K, L$ are such that $ADK$ and $BEL$ are equlateral, $A$ and $L$ lie on opposite sides of $BE$, $B$ and $K$ lie on the opposite siedes of $AD$. Prove that
$$AE+BD=KL.$$
2 replies
+1 w
blug
an hour ago
blug
8 minutes ago
equal angles starting with a parallelogram with perpenducular
parmenides51   3
N 10 minutes ago by FrancoGiosefAG
Source: Mexican Mathematical Olympiad 1994 OMM P3
$ABCD$ is a parallelogram. Take $E$ on the line $AB$ so that $BE = BC$ and $B$ lies between $A$ and $E$. Let the line through $C$ perpendicular to $BD$ and the line through $E$ perpendicular to $AB$ meet at $F$. Show that $\angle DAF = \angle BAF$.
3 replies
parmenides51
Jul 29, 2018
FrancoGiosefAG
10 minutes ago
An important lemma of isogonal conjugate points
buratinogigle   5
N 11 minutes ago by trigadd123
Source: Own
Let $P$ and $Q$ be two isogonal conjugate with respect to triangle $ABC$. Let $S$ and $T$ be two points lying on the circle $(PBC)$ such that $PS$ and $PT$ are perpendicular and parallel to bisector of $\angle BAC$, respectively. Prove that $QS$ and $QT$ bisect two arcs $BC$ containing $A$ and not containing $A$, respectively, of $(ABC)$.
5 replies
buratinogigle
Mar 23, 2025
trigadd123
11 minutes ago
A factorial equals sum of factorials
Ege_Saribass   1
N 18 minutes ago by Ege_Saribass
Source: Own
Let $n$ be given positive integer. Suppose that there is only one positive integer $m$ which satisfies the equation
$$m! = a_1! + a_2! + a_3! + \dots + a_n!$$for some positive integers $a_1, a_2, a_3, \dots, a_n$.Then find all possible values of the positive integer $n$.
1 reply
2 viewing
Ege_Saribass
19 minutes ago
Ege_Saribass
18 minutes ago
Long and wacky inequality
Royal_mhyasd   3
N 21 minutes ago by Royal_mhyasd
Source: Me
Let $x, y, z$ be positive real numbers such that $x^2 + y^2 + z^2 = 12$. Find the minimum value of the following sum :
$$\sum_{cyc}\frac{(x^3+2y)^3}{3x^2yz - 16z - 8yz + 6x^2z}$$knowing that the denominators are positive real numbers.
3 replies
Royal_mhyasd
May 12, 2025
Royal_mhyasd
21 minutes ago
y^2 = x^3 + 2x^2 + 2x + 1
pokmui9909   10
N 23 minutes ago by Assassino9931
Source: KJMO 2023 P1
Find all integer pairs $(x, y)$ such that $$y^2 = x^3 + 2x^2 + 2x + 1.$$
10 replies
pokmui9909
Nov 4, 2023
Assassino9931
23 minutes ago
Integer polynomial commutes with sum of digits
cjquines0   44
N 28 minutes ago by Shreyasharma
Source: 2016 IMO Shortlist N1
For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$
Proposed by Warut Suksompong, Thailand
44 replies
cjquines0
Jul 19, 2017
Shreyasharma
28 minutes ago
He's right though. [NICE MO 2021/8]
dchenmathcounts   19
N 29 minutes ago by ihategeo_1969
Source: NICE MO 2021 Day 2 Problem 8
Denote $H$ and $I$ as the orthocenter and incenter, respectively, of triangle $\triangle ABC$. Let $M$ be the midpoint of $\overline{BC}$. Prove that $\angle{HIM} = 90^\circ$ if and only if $AB + AC = 2BC$.
19 replies
dchenmathcounts
Apr 5, 2021
ihategeo_1969
29 minutes ago
Hyperbola through symmedian point
MarkBcc168   9
N 30 minutes ago by ihategeo_1969
Source: 2024 HMIC Problem 5
Let $ABC$ be an acute, scalene triangle with circumcenter $O$ and symmedian point $K$. Let $X$ be the point on the circumcircle of triangle $BOC$ such that $\angle AXO = 90^\circ$. Assume that $X\neq K$. The hyperbola passing through $B$, $C$, $O$, $K$, and $X$ intersects the circumcircle of triangle $ABC$ at points $U$ and $V$, distinct from $B$ and $C$. Prove that $UV$ is the perpendicular bisector of $AX$.

The symmedian point of triangle $ABC$ is the intersection of the reflections of $B$-median and $C$-median across the angle bisectors of $\angle ABC$ and $\angle ACB$, respectively.

Pitchayut Saengrungkongka
9 replies
MarkBcc168
Apr 22, 2024
ihategeo_1969
30 minutes ago
Computer too strong
Eyed   62
N an hour ago by AR17296174
Source: 2020 ISL G6
Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other
62 replies
1 viewing
Eyed
Jul 20, 2021
AR17296174
an hour ago
Problem 5
blug   0
an hour ago
Source: Czech-Polish-Slovak Junior Match 2025 Problem 5
For every integer $n\geq 1$ prove that
$$\frac{1}{n+1}-\frac{2}{n+2}+\frac{3}{n+3}-\frac{4}{n+4}+...+\frac{2n-1}{3n-1}>\frac{1}{3}.$$
0 replies
blug
an hour ago
0 replies
Problem 1
blug   1
N an hour ago by Primeniyazidayi
Source: Czech-Polish-Slovak Junior Match 2025 Problem 1
Find all primes $p, q, r$ such that
$$p^3+p^2+p+1=qr.$$
1 reply
blug
an hour ago
Primeniyazidayi
an hour ago
Problem 4
blug   0
an hour ago
Source: Czech-Polish-Slovak Junior Match 2025 Problem 4
Three non-negative integers are written on the board. In every step, the three numbers $(a, b, c)$ are being replaced with $a+b, b+c, c+a$. Find the biggest number of steps, after which the number $111$ will appear on the board.
0 replies
blug
an hour ago
0 replies
NT with repeating decimal digits
oVlad   1
N Apr 21, 2025 by kokcio
Source: Romania EGMO TST 2019 Day 1 P2
Determine the digits $0\leqslant c\leqslant 9$ such that for any positive integer $k{}$ there exists a positive integer $n$ such that the last $k{}$ digits of $n^9$ are equal to $c{}.$
1 reply
oVlad
Apr 21, 2025
kokcio
Apr 21, 2025
NT with repeating decimal digits
G H J
G H BBookmark kLocked kLocked NReply
Source: Romania EGMO TST 2019 Day 1 P2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
oVlad
1746 posts
#1
Y by
Determine the digits $0\leqslant c\leqslant 9$ such that for any positive integer $k{}$ there exists a positive integer $n$ such that the last $k{}$ digits of $n^9$ are equal to $c{}.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kokcio
69 posts
#2
Y by
We cannot have $c=2,4,6,8$, because last four digits would have to be divisible by $16$, but in each of this cases numbers $2222, 4444, 6666, 8888$ are not. Similarly, we can see that $c=5$ leads to contradiction.
Now, assume that $c$ is coprime to $10$. We know that $9$ is coprime with $\phi(5^n)$ and $\phi(2^n)$ for all $n$, so function $f(x)=x^9$ is bijective on integers relatively prime to $10^n$ (we count modulo $10^n$). To see that this function is bijective, we can also see that $a^9\equiv b^9\mod 5^n$ iff $5^n$ divides $(a-b)(a^2+ab+b^2)(a^6+a^3b^3+b^6)$, but $5$ cannot divide neither $a^2+ab+b^2$, nor $a^6+a^3b^3+b^6$ if $ab$ is not divisible by $5$, so we would have to have $a\equiv b\mod5^n$. The same argument works modulo $2^n$. Therefore, we can have $c=1,3,7,9$. Obviously, we can also have $c=0$, so our answer is $c\in\{0,1,3,7,9\}$.
Z K Y
N Quick Reply
G
H
=
a