Difference between revisions of "2021 AMC 12A Problems/Problem 18"
(→Problem) |
(→Solution 1 (but where do you get that $10=11+f(\frac{25}{11})$)) |
||
Line 7: | Line 7: | ||
==Solution 1== | ==Solution 1== | ||
− | |||
Looking through the solutions we can see that <math>f(\frac{25}{11})</math> can be expressed as <math>f(\frac{25}{11} \cdot 11) = f(11) + f(\frac{25}{11})</math> so using the prime numbers to piece together what we have we can get <math>10=11+f(\frac{25}{11})</math>, so <math>f(\frac{25}{11})=-1</math> or <math>\boxed{E}</math>. | Looking through the solutions we can see that <math>f(\frac{25}{11})</math> can be expressed as <math>f(\frac{25}{11} \cdot 11) = f(11) + f(\frac{25}{11})</math> so using the prime numbers to piece together what we have we can get <math>10=11+f(\frac{25}{11})</math>, so <math>f(\frac{25}{11})=-1</math> or <math>\boxed{E}</math>. | ||
Revision as of 22:22, 13 February 2021
- The following problem is from both the 2021 AMC 10A #18 and 2021 AMC 12A #18, so both problems redirect to this page.
Contents
[hide]Problem
Let be a function defined on the set of positive rational numbers with the property that for all positive rational numbers and . Furthermore, suppose that also has the property that for every prime number . For which of the following numbers is ?
Solution 1
Looking through the solutions we can see that can be expressed as so using the prime numbers to piece together what we have we can get , so or .
-Lemonie
Solution 2
We know that . Adding to both sides, we get Also In we have .
In we have .
In we have .
In we have .
In we have .
Thus, our answer is ~JHawk0224
Solution 3 (Deeper)
Consider the rational , for integers. We have . So . Let be a prime. Notice that . And . So if , . We simply need this to be greater than what we have for . Notice that for answer choices and , the numerator has less prime factors than the denominator, and so they are less likely to work. We check first, and it works, therefore the answer is .
~yofro
Video Solution by Hawk Math
https://www.youtube.com/watch?v=dvlTA8Ncp58
Video Solution by Punxsutawney Phil
Video Solution by OmegaLearn (Using Functions and manipulations)
~ pi_is_3.14
See also
2021 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.