Difference between revisions of "2021 AMC 12A Problems/Problem 5"

(Video Solution by Aaron He)
m (Solution)
Line 6: Line 6:
 
<math>\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75</math>
 
<math>\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75</math>
  
==Solution==
+
==Solution 1==
It is known that <math>0.\overline{ab}=\frac{ab}{99}</math> and <math>0.ab=\frac{ab}{100}</math>. Let <math>\overline {ab} = x</math>. We have that <math>66(1+\frac{x}{100})+0.5=66(1+\frac{x}{99})</math>. Solving gives that <math>100x-75=99x</math> so <math>x=\boxed{\text{(E)} 75}</math>. ~aop2014
+
It is known that <math>0.\overline{ab}=\frac{ab}{99}</math> and <math>0.ab=\frac{ab}{100}</math>. Let the 2-digit integer <math>\underline {ab} = x</math>.  
 +
 
 +
We have that <math>66(1+\frac{x}{100})+0.5=66(1+\frac{x}{99})</math>. Expanding and simplifying gives <math>0.5=\dfrac{x}{150}</math> so <math>x=\boxed{\text{(E)} 75}</math>.  
 +
 
 +
~aop2014
 +
~BakedPotato66
  
 
==Video Solution, Simple & Quick==
 
==Video Solution, Simple & Quick==

Revision as of 12:36, 14 March 2021

The following problem is from both the 2021 AMC 10A #8 and 2021 AMC 12A #5, so both problems redirect to this page.

Problem

When a student multiplied the number $66$ by the repeating decimal \[\underline{1}.\underline{a}\underline{b}\underline{a}\underline{b}...=\underline{1}.\overline{\underline{a}\underline{b}},\] where $a$ and $b$ are digits, he did not notice the notation and just multiplied $66$ times $\underline{1}.\underline{a}\underline{b}$. Later he found that his answer is $0.5$ less than the correct answer. What is the $2$-digit number $\underline{a}\underline{b}?$

$\textbf{(A) }15 \qquad \textbf{(B) }30 \qquad \textbf{(C) }45 \qquad \textbf{(D) }60 \qquad \textbf{(E) }75$

Solution 1

It is known that $0.\overline{ab}=\frac{ab}{99}$ and $0.ab=\frac{ab}{100}$. Let the 2-digit integer $\underline {ab} = x$.

We have that $66(1+\frac{x}{100})+0.5=66(1+\frac{x}{99})$. Expanding and simplifying gives $0.5=\dfrac{x}{150}$ so $x=\boxed{\text{(E)} 75}$.

~aop2014 ~BakedPotato66

Video Solution, Simple & Quick

https://youtu.be/9HI79V-vtCU

~ Education, the Study of Everything


Video Solution by Aaron He

https://www.youtube.com/watch?v=xTGDKBthWsw&t=4m12s

Video Solution(Use of properties of repeating decimals)

https://www.youtube.com/watch?v=zS1u-ohUDzQ&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=6\

~North America Math Contest Go Go Go

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=MUHja8TpKGw&t=359s

Video Solution by Hawk Math

https://www.youtube.com/watch?v=P5al76DxyHY

Video Solution (Using repeating decimal properties)

https://youtu.be/vQZ13WiL4WU

~ pi_is_3.14

Video Solution 7

https://youtu.be/DOF3FYUsXsU

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/s6E4E06XhPU?t=360 (AMC 10A)

https://youtu.be/rEWS75W0Q54?t=511 (AMC 12A)

~IceMatrix

See also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png