Difference between revisions of "1999 AIME Problems/Problem 14"

(Solution)
 
(9 intermediate revisions by 6 users not shown)
Line 14: Line 14:
 
D(A--MP("P",P,NW)--B);D(P--C);
 
D(A--MP("P",P,NW)--B);D(P--C);
 
D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30));
 
D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30));
MP("13",(A+B)/2,S);MP("14",(A+C)/2,NW);MP("15",(C+B)/2,NE);
+
MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE);
 
</asy></center>
 
</asy></center>
 
<!--This image does exist now: [[Image:1999_AIME-14.png]]-->
 
<!--This image does exist now: [[Image:1999_AIME-14.png]]-->
Line 32: Line 32:
 
D(A--MP("P",P,SSW)--B);D(P--C);
 
D(A--MP("P",P,SSW)--B);D(P--C);
 
D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30));
 
D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30));
MP("13",(A+B)/2,S);MP("14",(A+C)/2,NW);MP("15",(C+B)/2,NE);
+
MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE);
  
 
/* constructing D,E,F as foot of perps from P */
 
/* constructing D,E,F as foot of perps from P */
Line 102: Line 102:
 
</cmath>
 
</cmath>
 
Thus, <math>m + n = 168 + 295 = \boxed{463}</math>.
 
Thus, <math>m + n = 168 + 295 = \boxed{463}</math>.
 +
 +
Note: In fact, this problem is unfairly easy to those who happen to have learned about Brocard point. The Brocard Angle is given by
 +
<cmath>cot(\theta)=\frac{a^2+b^2+c^2}{4\Delta}</cmath>
 +
 +
=== Solution 3 ===
 +
 +
Let <math>\angle{PAB} = \angle{PBC} = \angle{PCA} = x.</math> Then, using Law of Cosines on the three triangles containing vertex <math>P,</math> we have
 +
<cmath>
 +
\begin{align*}
 +
b^2 &= a^2 + 169 - 26a \cos x \
 +
c^2 &= b^2 + 196 - 28b \cos x \
 +
a^2 &= c^2 + 225 - 30c \cos x.
 +
\end{align*}
 +
</cmath>
 +
Add the three equations up and rearrange to obtain <cmath>(13a + 14b + 15c) \cos x = 295.</cmath> Also, using <math>[ABC] = \frac{1}{2}ab \sin \angle C</math> we have <cmath>[ABC] = [APB] + [BPC] + [CPA] = \dfrac{\sin x}{2}(13a + 14b + 15c) = 84 \iff (13a + 14b + 15c) \sin x = 168.</cmath> Divide the two equations to obtain <math>\tan x = \frac{168}{295} \iff \boxed{463}.~\square</math>
 +
 +
 +
=== Solution 4 (Law of sines) ===
 +
Firstly, denote angles <math>ABC</math>, <math>BCA</math>, and <math>CAB</math> as <math>B</math>, <math>A</math>, and <math>C</math> respectively. Let <math>\angle{PAB}=x</math>.
 +
Notice that by angle chasing that <math>\angle{BPC}=180-C</math> and <math>\angle{BPA}=180-B</math>.
 +
Using the nice properties of the 13-14-15 triangle, we have <math>\sin B = \frac{12}{13}</math> and <math>\sin C = \frac{4}{5}</math>. <math>\cos C</math> is easily computed, so we have <math>\cos C=\frac{3}{5}</math>.
 +
 +
Using Law of Sines,
 +
<cmath>
 +
\begin{align*}
 +
\frac{BP}{\sin x} &= \frac{13}{\sin (180 - B)} \
 +
\frac{BP}{\sin (C - x)} &= \frac{14}{\sin (180 - C)}
 +
\end{align*}
 +
</cmath>
 +
hence,
 +
<cmath>
 +
\begin{align*}
 +
\frac{BP}{\sin x} &= \frac{13}{\sin B} \
 +
\frac{BP}{\sin (C - x)} &= \frac{14}{\sin C}
 +
\end{align*}
 +
</cmath>
 +
Now, computation carries the rest.
 +
<cmath>
 +
\begin{align*}
 +
\frac{13 \sin x}{\sin B} &= \frac{14 \sin (C-x)}{\sin C}  \
 +
\frac{169 \sin x}{12} &= \frac{210 \sin (C-x)}{12} \
 +
169 \sin x &= 210 (\sin C \cos x - \cos C \sin x) \
 +
169 \sin x &= 210 (\frac{4}{5} \cos x - \frac{3}{5} \sin x) \
 +
169 \sin x &= 168 \cos x - 126 \sin x \
 +
295 \sin x &= 168 \cos x \
 +
\tan x &= \frac{168}{295}
 +
\end{align*}
 +
</cmath>
 +
Extracting yields <math>168 + 295 = \boxed{463}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 12:25, 22 December 2022

Problem

Point $P_{}$ is located inside triangle $ABC$ so that angles $PAB, PBC,$ and $PCA$ are all congruent. The sides of the triangle have lengths $AB=13, BC=14,$ and $CA=15,$ and the tangent of angle $PAB$ is $m/n,$ where $m_{}$ and $n_{}$ are relatively prime positive integers. Find $m+n.$

Solution

[asy] real theta = 29.66115; /* arctan(168/295) to five decimal places .. don't know other ways to construct Brocard */  pathpen = black +linewidth(0.65); pointpen = black; pair A=(0,0),B=(13,0),C=IP(circle(A,15),circle(B,14)); D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle);  /* constructing P, C is there as check */ pair Aa=A+(B-A)*dir(theta),Ba=B+(C-B)*dir(theta),Ca=C+(A-C)*dir(theta), P=IP(A--Aa,B--Ba);  D(A--MP("P",P,NW)--B);D(P--C); D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30)); MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE); [/asy]

Solution 1

Drop perpendiculars from $P$ to the three sides of $\triangle ABC$ and let them meet $\overline{AB}, \overline{BC},$ and $\overline{CA}$ at $D, E,$ and $F$ respectively.

[asy] import olympiad; real theta = 29.66115; /* arctan(168/295) to five decimal places .. don't know other ways to construct Brocard */  pathpen = black +linewidth(0.65); pointpen = black; pair A=(0,0),B=(13,0),C=IP(circle(A,15),circle(B,14)); D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle);  /* constructing P, C is there as check */ pair Aa=A+(B-A)*dir(theta),Ba=B+(C-B)*dir(theta),Ca=C+(A-C)*dir(theta), P=IP(A--Aa,B--Ba);  D(A--MP("P",P,SSW)--B);D(P--C); D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30)); MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE);  /* constructing D,E,F as foot of perps from P */ pair D=foot(P,A,B),E=foot(P,B,C),F=foot(P,C,A); D(MP("D",D,NE)--P--MP("E",E,SSW),dashed);D(P--MP("F",F),dashed); D(rightanglemark(P,E,C,15));D(rightanglemark(P,F,C,15));D(rightanglemark(P,D,A,15)); [/asy]

Let $BE = x, CF = y,$ and $AD = z$. We have that \begin{align*}DP&=z\tan\theta\\ EP&=x\tan\theta\\ FP&=y\tan\theta\end{align*} We can then use the tool of calculating area in two ways \begin{align*}[ABC]&=[PAB]+[PBC]+[PCA]\\ &=\frac{1}{2}(13)(z\tan\theta)+\frac{1}{2}(14)(x\tan\theta)+\frac{1}{2}(15)(y\tan\theta)\\ &=\frac{1}{2}\tan\theta(13z+14x+15y)\end{align*} On the other hand, \begin{align*}[ABC]&=\sqrt{s(s-a)(s-b)(s-c)}\\ &=\sqrt{21\cdot6\cdot7\cdot8}\\ &=84\end{align*} We still need $13z+14x+15y$ though. We have all these right triangles and we haven't even touched Pythagoras. So we give it a shot: \begin{align}x^2+x^2\tan^2\theta&=z^2\tan^2\theta+(13-z)^2\\ z^2+z^2\tan^2\theta&=y^2\tan^2\theta+(15-y)^2\\ y^2+y^2\tan^2\theta&=x^2\tan^2\theta+(14-x)^2\end{align} Adding $(1) + (2) + (3)$ gives \begin{align*}x^2+y^2+z^2&=(14-x)^2+(15-y)^2+(13-z)^2\\ \Rightarrow13z+14x+15y&=295\end{align*} Recall that we found that $[ABC]=\frac{1}{2}\tan\theta(13z+14x+15y)=84$. Plugging in $13z+14x+15y=295$, we get $\tan\theta=\frac{168}{295}$, giving us $\boxed{463}$ for an answer.

Solution 2

Let $AB=c$, $BC=a$, $AC=b$, $PA=x$, $PB=y$, and $PC=z$.

So by the Law of Cosines, we have: \begin{align*}x^2 &= z^2 + b^2 - 2bz\cos{\theta}\\ y^2 &= x^2 + c^2 - 2cx\cos{\theta}\\ z^2 &= y^2 + a^2 - 2ay\cos{\theta}\end{align*} Adding these equations and rearranging, we have: \[a^2 + b^2 + c^2 = (2bz + 2cx + 2ay)\cos{\theta}\qquad(1)\] Now $[CAP] + [ABP] + [BCP] = [ABC] = \sqrt {(21)(8)(7)(6)} = 84$, by Heron's formula.

Now the area of a triangle, $[A] = \frac {mn\sin{\beta}}{2}$, where $m$ and $n$ are sides on either side of an angle, $\beta$. So, \begin{align*}[CAP] &= \frac {bz\sin{\theta}}{2}\\ [ABP] &= \frac {cx\sin{\theta}}{2}\\ [BCP] &= \frac {ay\sin{\theta}}{2}\end{align*} Adding these equations yields: \begin{align*}[ABC]= 84 &= \frac {(bz + cx + ay)\sin{\theta}}{2}\\ \Rightarrow 168&= (bz + cx + ay)\sin{\theta}\qquad (2)\end{align*} Dividing $(2)$ by $(1)$, we have: \begin{align*}\frac {168}{a^2 + b^2 + c^2} &= \frac {(bz + cx + ay)\sin{\theta}}{(2bz + 2cx + 2ay)\cos{\theta}}\\ \Rightarrow \tan{\theta} = \frac {336}{a^2 + b^2 + c^2} &= \frac {336}{14^2 + 15^2 + 13^2} = \frac {336}{590} = \frac {168}{295}\end{align*} Thus, $m + n = 168 + 295 = \boxed{463}$.

Note: In fact, this problem is unfairly easy to those who happen to have learned about Brocard point. The Brocard Angle is given by \[cot(\theta)=\frac{a^2+b^2+c^2}{4\Delta}\]

Solution 3

Let $\angle{PAB} = \angle{PBC} = \angle{PCA} = x.$ Then, using Law of Cosines on the three triangles containing vertex $P,$ we have \begin{align*} b^2 &= a^2 + 169 - 26a \cos x \\ c^2 &= b^2 + 196 - 28b \cos x \\ a^2 &= c^2 + 225 - 30c \cos x. \end{align*} Add the three equations up and rearrange to obtain \[(13a + 14b + 15c) \cos x = 295.\] Also, using $[ABC] = \frac{1}{2}ab \sin \angle C$ we have \[[ABC] = [APB] + [BPC] + [CPA] = \dfrac{\sin x}{2}(13a + 14b + 15c) = 84 \iff (13a + 14b + 15c) \sin x = 168.\] Divide the two equations to obtain $\tan x = \frac{168}{295} \iff \boxed{463}.~\square$


Solution 4 (Law of sines)

Firstly, denote angles $ABC$, $BCA$, and $CAB$ as $B$, $A$, and $C$ respectively. Let $\angle{PAB}=x$. Notice that by angle chasing that $\angle{BPC}=180-C$ and $\angle{BPA}=180-B$. Using the nice properties of the 13-14-15 triangle, we have $\sin B = \frac{12}{13}$ and $\sin C = \frac{4}{5}$. $\cos C$ is easily computed, so we have $\cos C=\frac{3}{5}$.

Using Law of Sines, \begin{align*} \frac{BP}{\sin x} &= \frac{13}{\sin (180 - B)} \\ \frac{BP}{\sin (C - x)} &= \frac{14}{\sin (180 - C)} \end{align*} hence, \begin{align*} \frac{BP}{\sin x} &= \frac{13}{\sin B} \\ \frac{BP}{\sin (C - x)} &= \frac{14}{\sin C} \end{align*} Now, computation carries the rest. \begin{align*} \frac{13 \sin x}{\sin B} &= \frac{14 \sin (C-x)}{\sin C}  \\ \frac{169 \sin x}{12} &= \frac{210 \sin (C-x)}{12} \\ 169 \sin x &= 210 (\sin C \cos x - \cos C \sin x) \\ 169 \sin x &= 210 (\frac{4}{5} \cos x - \frac{3}{5} \sin x) \\ 169 \sin x &= 168 \cos x - 126 \sin x \\ 295 \sin x &= 168 \cos x \\ \tan x &= \frac{168}{295} \end{align*} Extracting yields $168 + 295 = \boxed{463}$.

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png