Difference between revisions of "1958 AHSME Problems"

(Problem 1)
Line 11: Line 11:
  
  
[[1959 AHSME Problems/Problem 2|Solution]]
+
[[1994 AHSME Problems/Problem 2|Solution]]
  
 
== Problem 3 ==
 
== Problem 3 ==
  
  
[[1959 AHSME Problems/Problem 3|Solution]]
+
[[1994 AHSME Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
  
  
[[1959 AHSME Problems/Problem 4|Solution]]
+
[[1994 AHSME Problems/Problem 4|Solution]]
  
 
== Problem 5 ==
 
== Problem 5 ==
  
  
[[1959 AHSME Problems/Problem 5|Solution]]
+
[[1994 AHSME Problems/Problem 5|Solution]]
  
 
== Problem 6 ==
 
== Problem 6 ==
  
  
[[1959 AHSME Problems/Problem 6|Solution]]
+
[[1994 AHSME Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
  
  
[[1959 AHSME Problems/Problem 7|Solution]]
+
[[1994 AHSME Problems/Problem 7|Solution]]
  
 
== Problem 8 ==
 
== Problem 8 ==
  
  
[[1959 AHSME Problems/Problem 8|Solution]]
+
[[1994 AHSME Problems/Problem 8|Solution]]
  
 
== Problem 9 ==
 
== Problem 9 ==
  
  
[[1959 AHSME Problems/Problem 9|Solution]]
+
[[1994 AHSME Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
  
  
[[1959 AHSME Problems/Problem 10|Solution]]
+
[[1994 AHSME Problems/Problem 10|Solution]]
  
 
== Problem 11 ==
 
== Problem 11 ==
  
  
[[1959 AHSME Problems/Problem 11|Solution]]
+
[[1994 AHSME Problems/Problem 11|Solution]]
  
 
== Problem 12 ==
 
== Problem 12 ==
  
  
[[1959 AHSME Problems/Problem 12|Solution]]
+
[[1994 AHSME Problems/Problem 12|Solution]]
  
 
== Problem 13 ==
 
== Problem 13 ==
  
  
[[1959 AHSME Problems/Problem 13|Solution]]
+
[[1994 AHSME Problems/Problem 13|Solution]]
  
 
== Problem 14 ==
 
== Problem 14 ==
  
  
[[1959 AHSME Problems/Problem 14|Solution]]
+
[[1994 AHSME Problems/Problem 14|Solution]]
  
 
== Problem 15 ==
 
== Problem 15 ==
  
  
[[1959 AHSME Problems/Problem 15|Solution]]
+
[[1994 AHSME Problems/Problem 15|Solution]]
  
 
== Problem 16 ==
 
== Problem 16 ==
  
  
[[1959 AHSME Problems/Problem 16|Solution]]
+
[[1994 AHSME Problems/Problem 16|Solution]]
  
 
== Problem 17 ==
 
== Problem 17 ==
  
  
[[1959 AHSME Problems/Problem 17|Solution]]
+
[[1994 AHSME Problems/Problem 17|Solution]]
  
 
== Problem 18 ==
 
== Problem 18 ==
  
  
[[1959 AHSME Problems/Problem 18|Solution]]
+
[[1994 AHSME Problems/Problem 18|Solution]]
  
 
== Problem 19 ==
 
== Problem 19 ==
  
  
[[1959 AHSME Problems/Problem 19|Solution]]
+
[[1994 AHSME Problems/Problem 19|Solution]]
  
 
== Problem 20 ==
 
== Problem 20 ==
  
  
[[1959 AHSME Problems/Problem 20|Solution]]
+
[[1994 AHSME Problems/Problem 20|Solution]]
  
 
== Problem 21 ==
 
== Problem 21 ==
  
  
[[1959 AHSME Problems/Problem 21|Solution]]
+
[[1994 AHSME Problems/Problem 21|Solution]]
  
 
== Problem 22 ==
 
== Problem 22 ==
  
[[1959 AHSME Problems/Problem 22|Solution]]
+
[[1994 AHSME Problems/Problem 22|Solution]]
  
 
== Problem 23 ==
 
== Problem 23 ==
  
  
[[1959 AHSME Problems/Problem 23|Solution]]
+
[[1994 AHSME Problems/Problem 23|Solution]]
  
 
== Problem 24 ==
 
== Problem 24 ==
  
  
[[1959 AHSME Problems/Problem 24|Solution]]
+
[[1994 AHSME Problems/Problem 24|Solution]]
  
 
== Problem 25 ==
 
== Problem 25 ==
  
  
[[1959 AHSME Problems/Problem 25|Solution]]
+
[[1994 AHSME Problems/Problem 25|Solution]]
  
 
== Problem 26 ==
 
== Problem 26 ==
  
  
[[1959 AHSME Problems/Problem 26|Solution]]
+
[[1994 AHSME Problems/Problem 26|Solution]]
  
 
== Problem 27 ==
 
== Problem 27 ==
  
  
[[1959 AHSME Problems/Problem 27|Solution]]
+
[[1994 AHSME Problems/Problem 27|Solution]]
  
 
== Problem 28 ==
 
== Problem 28 ==
  
  
[[1959 AHSME Problems/Problem 28|Solution]]
+
[[1994 AHSME Problems/Problem 28|Solution]]
  
 
== Problem 29 ==
 
== Problem 29 ==
  
  
[[1959 AHSME Problems/Problem 29|Solution]]
+
[[1994 AHSME Problems/Problem 29|Solution]]
  
 
== Problem 30 ==
 
== Problem 30 ==
  
  
[[1959 AHSME Problems/Problem 30|Solution]]
+
[[1994 AHSME Problems/Problem 30|Solution]]
  
 
== See also ==
 
== See also ==

Revision as of 20:09, 9 February 2011

Problem 1

For integers $a, b$ and $c$, define $\boxed a,b,c$ to mean $a^b-b^c+c^a$. Then $\boxed 1,-1,2$ equals

$\text{(A)} \ -4 \qquad \text{(B)} \ -2 \qquad \text{(C)} \ 0 \qquad \text{(D)} \ 2 \qquad \texxt{(E)} \4$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 2

Solution

Problem 3

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

Problem 26

Solution

Problem 27

Solution

Problem 28

Solution

Problem 29

Solution

Problem 30

Solution

See also