Difference between revisions of "2006 AMC 10A Problems/Problem 17"
(+ <asy>s (v_enhance azjps)) |
|||
Line 59: | Line 59: | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
[[Category:Area Problems]] | [[Category:Area Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 10:32, 4 July 2013
Problem
In rectangle , points and trisect , and points and trisect . In addition, . What is the area of quadrilateral shown in the figure?
Contents
[hide]Solution
Solution 1
It is not difficult to see by symmetry that is a square. Draw . Clearly . Then is isosceles, and is a . Hence , and .
There are many different similar ways to come to the same conclusion using different 45-45-90 triangles.
Solution 2
Draw the lines as shown above, and count the squares. There are 12, so we have .
See Also
2006 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.