Difference between revisions of "2006 AMC 10A Problems/Problem 16"

m (Solution)
m (+ <asy>s (v_enhance azjps))
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
[[Image:2006_AMC10A-16.png]]
+
<!-- [[Image:2006_AMC10A-16.png]] -->
 
 
 
A [[circle]] of [[radius]] 1 is tangent to a circle of radius 2. The sides of <math>\triangle ABC</math> are [[tangent]] to the circles as shown, and the sides <math>\overline{AB}</math>  and <math>\overline{AC}</math> are [[congruent]]. What is the area of <math>\triangle ABC</math>?
 
A [[circle]] of [[radius]] 1 is tangent to a circle of radius 2. The sides of <math>\triangle ABC</math> are [[tangent]] to the circles as shown, and the sides <math>\overline{AB}</math>  and <math>\overline{AC}</math> are [[congruent]]. What is the area of <math>\triangle ABC</math>?
 +
<asy>
 +
size(200); pathpen = linewidth(0.7); pointpen = black;
 +
real t=2^0.5;
 +
D((0,0)--(4*t,0)--(2*t,8)--cycle);
 +
D(CR((2*t,2),2));
 +
D(CR((2*t,5),1));
 +
D('B', (0,0),SW); D('C',(4*t,0), SE); D('A', (2*t, 8), N);
 +
D((2*t,2)--(2*t,4)); D((2*t,5)--(2*t,6));
 +
MP('2', (2*t,3), W); MP('1',(2*t, 5.5), W);</asy>
  
 
<math>\mathrm{(A) \ } \frac{35}{2}\qquad\mathrm{(B) \ } 15\sqrt{2}\qquad\mathrm{(C) \ } \frac{64}{3}\qquad\mathrm{(D) \ } 16\sqrt{2}\qquad\mathrm{(E) \ } 24\qquad</math>
 
<math>\mathrm{(A) \ } \frac{35}{2}\qquad\mathrm{(B) \ } 15\sqrt{2}\qquad\mathrm{(C) \ } \frac{64}{3}\qquad\mathrm{(D) \ } 16\sqrt{2}\qquad\mathrm{(E) \ } 24\qquad</math>
  
 
== Solution ==
 
== Solution ==
[[Image:2006_AMC10A-16a.png]]
+
<!-- [[Image:2006_AMC10A-16a.png]] -->
 +
<asy>
 +
size(200); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10);
 +
real t=2^0.5;
 +
D((0,0)--(4*t,0)--(2*t,8)--cycle);
 +
D(CR(D((2*t,2)),2));
 +
D(CR(D((2*t,5)),1));
 +
D('B', (0,0),SW); D('C',(4*t,0), SE); D('A', (2*t, 8), N);
 +
pair A = foot((2*t,2),(2*t,8),(4*t,0)), B = foot((2*t,5),(2*t,8),(4*t,0));
 +
D((2*t,0)--(2*t,8)); D((2*t,2)--D(A)); D((2*t,5)--D(B)); D(rightanglemark((2*t,2),A,(4*t,0))); D(rightanglemark((2*t,5),B,(4*t,0)));
 +
MP('2', (2*t,3), W); MP('1',(2*t, 5.5), W); MP("F",(2*t,0)); MP("O_1",(2*t,5),W); MP("O_2",(2*t,2),W); MP("D",B,NE); MP("E",A,NE); </asy>
  
 
Note that <math>\triangle ADO_1 \sim \triangle AEO_2 \sim \triangle AFC</math>. Using the first pair of [[similar triangles]], we write the [[proportion]]:
 
Note that <math>\triangle ADO_1 \sim \triangle AEO_2 \sim \triangle AFC</math>. Using the first pair of [[similar triangles]], we write the [[proportion]]:
Line 25: Line 43:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
[[Category:Circle Problems]]
 +
[[Category:Similar Triangle Problems]]

Revision as of 14:46, 20 August 2011

Problem

A circle of radius 1 is tangent to a circle of radius 2. The sides of $\triangle ABC$ are tangent to the circles as shown, and the sides $\overline{AB}$ and $\overline{AC}$ are congruent. What is the area of $\triangle ABC$? [asy] size(200); pathpen = linewidth(0.7); pointpen = black; real t=2^0.5; D((0,0)--(4*t,0)--(2*t,8)--cycle); D(CR((2*t,2),2)); D(CR((2*t,5),1)); D('B', (0,0),SW); D('C',(4*t,0), SE); D('A', (2*t, 8), N); D((2*t,2)--(2*t,4)); D((2*t,5)--(2*t,6)); MP('2', (2*t,3), W); MP('1',(2*t, 5.5), W);[/asy]

$\mathrm{(A) \ } \frac{35}{2}\qquad\mathrm{(B) \ } 15\sqrt{2}\qquad\mathrm{(C) \ } \frac{64}{3}\qquad\mathrm{(D) \ } 16\sqrt{2}\qquad\mathrm{(E) \ } 24\qquad$

Solution

[asy] size(200); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); real t=2^0.5; D((0,0)--(4*t,0)--(2*t,8)--cycle);  D(CR(D((2*t,2)),2)); D(CR(D((2*t,5)),1)); D('B', (0,0),SW); D('C',(4*t,0), SE); D('A', (2*t, 8), N); pair A = foot((2*t,2),(2*t,8),(4*t,0)), B = foot((2*t,5),(2*t,8),(4*t,0)); D((2*t,0)--(2*t,8)); D((2*t,2)--D(A)); D((2*t,5)--D(B)); D(rightanglemark((2*t,2),A,(4*t,0))); D(rightanglemark((2*t,5),B,(4*t,0))); MP('2', (2*t,3), W); MP('1',(2*t, 5.5), W); MP("F",(2*t,0)); MP("O_1",(2*t,5),W); MP("O_2",(2*t,2),W); MP("D",B,NE); MP("E",A,NE); [/asy]

Note that $\triangle ADO_1 \sim \triangle AEO_2 \sim \triangle AFC$. Using the first pair of similar triangles, we write the proportion:

$\frac{AO_1}{AO_2} = \frac{DO_1}{EO_2} \Longrightarrow \frac{AO_1}{AO_1 + 3} = \frac{1}{2} \Longrightarrow AO_1 = 3$

By the Pythagorean Theorem we have that $AD = \sqrt{3^2-1^2} = \sqrt{8}$.

Now using $\triangle ADO_1 \sim \triangle AFC$,

$\frac{AD}{AF} = \frac{DO_1}{CF} \Longrightarrow \frac{2\sqrt{2}}{8} = \frac{1}{CF} \Longrightarrow CF = 2\sqrt{2}$

The area of the triangle is $\frac{1}{2}\cdot AF \cdot BC = \frac{1}{2}\cdot AF \cdot (2\cdot CF) = AF \cdot CF = 8\left(2\sqrt{2}\right) = 16\sqrt{2}\ \mathrm{(D)}$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions