Search results
Create the page "I equal tan 90" on this wiki! See also the search results found.
- ...BG</math>). Then <math>\tan \angle EOG = \frac{x}{450}</math>, and <math>\tan \angle FOG = \frac{y}{450}</math>. ...frac{y}{450}}{1 - \frac{x}{450} \cdot \frac{y}{450}}.</cmath> Since <math>\tan 45 = 1</math>, this simplifies to <math>1 - \frac{xy}{450^2} = \frac{x + y}13 KB (2,080 words) - 12:14, 23 July 2024
- for (int i=0; i<12; ++i) dot((cos(i*pi/6), sin(i*pi/6)));4 KB (740 words) - 16:46, 24 May 2024
- ...</math> are relatively prime positive integers that satisfy <math>\frac mn<90,</math> find <math>m+n.</math> ...manipulate this sum by wrapping the terms around (since the first half is equal to the second half), but it quickly becomes apparent that this way is diffi5 KB (816 words) - 12:39, 29 June 2024
- ...angle BAC</math> hits <math>BC</math> at <math>D</math>. If <math>\angle C=90^\circ</math>, and the maximum value of <math>\frac{[ABD]}{[ACD]}=\frac{m}{n .../math>. <math>\lfloor x\rfloor</math> is the greatest integer less than or equal to <math>x</math>. If for fixed <math>n</math>, there exists an integer <ma8 KB (1,355 words) - 13:54, 21 August 2020
- <i><b>Acute triangle</b></i> ...vec BD}{\vec DA} = n = \frac {\tan \alpha – \tan \gamma}{\tan \beta – \tan \gamma} > 0.</math>59 KB (10,203 words) - 03:47, 30 August 2023
- ...</math> is clearly a cyclic quadrilateral, the angle <math>COE </math> is equal to half the angle <math>GAO </math>. Then \begin{matrix} {CE} & = & r \tan(COE) \\4 KB (684 words) - 06:28, 3 October 2021
- ...n the exterior of the triangle and are the centers of two [[circle]]s with equal [[radius|radii]]. The circle with center <math>O_1</math> is tangent to th [[Image:AIME I 2007-9.png]]11 KB (1,853 words) - 19:10, 21 July 2024
- ...their [[complement]]s are <math>15^{\circ}</math>, and <math>\angle DAB' = 90 - 2(15) = 60^{\circ}</math>. We know that <math>\angle DB'A = 75^{\circ}</m ...h>30-60-90</math> triangle is <math>10</math>, the base of the <math>45-45-90</math> is <math>10\sqrt{3}</math>, and their common height is <math>10\sqrt10 KB (1,458 words) - 19:50, 3 November 2023
- Q=r*(rotate(-90)*A/length(A)); X=extension(A,P,Q,Q+A); Y=extension(B,P,Q,Q+A); R=rotate(90,C)*(C+r*(A-C)/length(A-C)); Z=extension(C,P,R,R+A-C);11 KB (2,099 words) - 22:44, 6 October 2024
- | <math>\textstyle 2^{23}</math>||2^{23}||<math>\textstyle n_{i-1}</math>||n_{i-1} | <math>a^{i+1}_3</math>||a^{i+1}_3||<math>x^{3^2}</math>||x^{3^2}12 KB (1,798 words) - 20:55, 22 September 2024
- I. The digit is 1. <math> \mathrm{(A) \ I\ is\ true} \qquad \mathrm{(B) \ I\ is\ false} \qquad \mathrm{(C) \ II\ is\ true} \qquad \mathrm{(D) \ III\ is13 KB (1,945 words) - 17:28, 19 June 2023
- Which of the following is equal to the [[product]] ...rs <math>15\%</math> off the sticker price followed by a <math>\textdollar 90</math> rebate, and store <math>B</math> offers <math>25\%</math> off the sa13 KB (2,025 words) - 12:56, 2 February 2021
- ...he resulting heights <math>h_n</math> and <math>h_{n+1}</math>. From 30-60-90 rules, the distance between the points where these altitudes meet the x-axi ...th> coordinates are the squares of the heights). Setting these expressions equal and dividing throughout by <math>h_{n+1}+h_n</math> leaves <math>h_{n+1}-h_9 KB (1,482 words) - 12:52, 4 April 2024
- ...rm{(A)}\ 75\qquad\mathrm{(B)}\ 80\qquad\mathrm{(C)}\ 85\qquad\mathrm{(D)}\ 90\qquad\mathrm{(E)}\ 95</math> ...</math> equals <math>55</math> degrees, thus making angle <math>AYB</math> equal to <math>60</math> degrees. We can also find out that angle <math>CYB</math12 KB (1,944 words) - 17:31, 28 August 2024
- for(int i=0;i<=5;i=i+1) draw(circle(7/2+d*i,3/2));71 KB (11,749 words) - 00:31, 2 November 2023
- Assume the length of <math>BD</math> is equal to <math>h</math>. Then, by Pythagoras, we have, <math>A): 4 \sqrt{3}</math>. I am too lazy to go over this, but we immediately see that this is very impro5 KB (879 words) - 17:57, 30 April 2024
- ...> be the circle having <math>\overline{CD}</math> as a diameter. Let <math>I</math> be a point outside <math>\triangle ABC</math> such that <math>\overl ...length <math>x</math>. Then the perimeter of <math>\triangle ABI</math> is equal to <cmath>2(x+AD+DB)=2(x+37).</cmath> It remains to compute <math>\dfrac{2(13 KB (2,170 words) - 22:35, 3 September 2024
- ...t{3})=14-7\sqrt3</math>. Then, the area of [<math>\triangle BPC</math>] is equal to <math>7 \cdot OP=98-49\sqrt{3}</math>, and so the answer is <math>98+49+ {{AIME box|year=2009|n=I|num-b=14|after=Last Question}}6 KB (1,048 words) - 18:35, 2 January 2023
- Notice that removing as many lemmings as possible at each step (i.e., using the greedy algorithm) is optimal. This can be easily proved throu ...{10})</math>, with <math>0 \le b_i \le 2, 3|a_i-b_i</math> for <math>1 \le i \le 10</math>. Given that <math>f</math> can take on <math>K</math> distinc36 KB (6,214 words) - 19:22, 13 July 2023
- ...A_6}</math>, and <math>\overline{A_7 A_8}</math>, respectively. For <math>i = 1, 3, 5, 7</math>, ray <math>R_i</math> is constructed from <math>M_i</ma label("$M_1$",M,dir(90));8 KB (1,365 words) - 15:07, 2 September 2024