# Difference between revisions of "2006 AMC 10A Problems/Problem 17"

## Problem

In rectangle $ADEH$, points $B$ and $C$ trisect $\overline{AD}$, and points $G$ and $F$ trisect $\overline{HE}$. In addition, $AH=AC=2$, and $AD=3$. What is the area of quadrilateral $WXYZ$ shown in the figure? $\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{\sqrt{2}}{2}\qquad\mathrm{(C) \ } \frac{\sqrt{3}}{2}\qquad\mathrm{(D) \ } \frac{2\sqrt{2}}{2}\qquad\mathrm{(E) \ } \frac{2\sqrt{3}}{3}\qquad$ $[asy] size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,2); B=(1,2); C=(2,2); D=(3,2); H=(0,0); G=(1,0); F=(2,0); E=(3,0); D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); D(A--F); D(B--E); D(D--G); D(C--H); Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); D(A--D--E--H--cycle); [/asy]$

## Solution

### Solution 1

It is not difficult to see by symmetry that $WXYZ$ is a square. $[asy] size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,2); B=(1,2); C=(2,2); D=(3,2); H=(0,0); G=(1,0); F=(2,0); E=(3,0); D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); D(A--F); D(B--E); D(D--G); D(C--H); Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); MP("1",(A+B)/2,2*N); MP("2",(A+H)/2,plain.W); D(B--Z); MP("1",(B+Z)/2,plain.W); MP("\frac{\sqrt{2}}{2}",(W+Z)/2,plain.SE); D(A--D--E--H--cycle); [/asy]$ Draw $\overline{BZ}$. Clearly $BZ = \frac 12AH = 1$. Then $\triangle BWZ$ is isosceles, and is a $45-45-90 \triangle$. Hence $WZ = \frac{1}{\sqrt{2}}$, and $[WXYZ] = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac 12\ \mathrm{(A)}$.

There are many different similar ways to come to the same conclusion using different 45-45-90 triangles.

### Solution 2 $[asy] size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,2); B=(1,2); C=(2,2); D=(3,2); H=(0,0); G=(1,0); F=(2,0); E=(3,0); D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); D(A--F); D(B--E); D(D--G); D(C--H); Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); D(B--D((A+H)/2)--G);D(C--D((E+D)/2)--F); D(A--D--E--H--cycle); [/asy]$

Draw the lines as shown above, and count the squares. There are 12, so we have $\frac{2\cdot 3}{12} = \frac 12$.

## Solution 3

We see that if we draw a line to $BZ$ it is half the width of the rectangle so that length would be $1$, and the resulting triangle is a $45-45-90$ so using the Pythagorean Theorem we can get that each side is $\sqrt{\frac{1^2}{2}}$ so the area of the middle square would be $(\sqrt{\frac{1^2}{2}})^2=(\sqrt{\frac{1}{2}})^2=\frac{1}{2}$ which is our answer.

## Solution 4

Since $B$ and $C$ are trisection points and $AC = 2$, we see that $AD = 3$. Also, $AC = AH$, so triangle $ACH$ is a right isosceles triangle, i.e. $\angle ACH = \angle AHC = 45^\circ$. By symmetry, triangles $AFH$, $DEG$, and $BED$ are also right isosceles triangles. Therefore, $\angle WAD = \angle WDA = 45^\circ$, which means triangle $AWD$ is also a right isosceles triangle. Also, triangle $AXC$ is a right isosceles triangle.

Then $AW = AD/\sqrt{2} = 3/\sqrt{2}$, and $AX = AC/\sqrt{2} = 2/\sqrt{2}$. Hence, $XW = AW - AX = 3/\sqrt{2} - 2/\sqrt{2} = 1/\sqrt{2}$.

By symmetry, quadrilateral $WXYZ$ is a square, so its area is $$XW^2 = \left( \frac{1}{\sqrt{2}} \right)^2 = \boxed{\frac{1}{2}}.$$

~made by AoPS (somewhere) -put here by qkddud~

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 