Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Today at 3:57 PM
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Today at 3:57 PM
0 replies
2-var inequality
sqing   16
N 24 minutes ago by ytChen
Source: Own
Let $ a,b> 0 ,a^3+ab+b^3=3.$ Prove that
$$ (a+b)(a+1)(b+1) \leq 8$$$$ (a^2+b^2)(a+1)(b+1) \leq 8$$Let $ a,b> 0 ,a^3+ab(a+b)+b^3=3.$ Prove that
$$ (a+b)(a+1)(b+1) \leq \frac{3}{2}+\sqrt[3]{6}+\sqrt[3]{36}$$
16 replies
1 viewing
sqing
May 31, 2025
ytChen
24 minutes ago
Another right angled triangle
ariopro1387   6
N an hour ago by sami1618
Source: Iran Team selection test 2025 - P7
Let $ABC$ be a right angled triangle with $\angle A=90$.Let $M$ be the midpoint of $BC$, and $P$ be an arbitrary point on $AM$. The reflection of $BP$ over $AB$ intersects lines $AC$ and $AM$ at $T$ and $Q$, respectively. The circumcircles of $BPQ$ and $ABC$ intersect again at $F$. Prove that the center of the circumcircle of $CFT$ lies on $BQ$.
6 replies
ariopro1387
May 25, 2025
sami1618
an hour ago
IMO Shortlist 2012, Number Theory 5
lyukhson   32
N an hour ago by awesomeming327.
Source: IMO Shortlist 2012, Number Theory 5
For a nonnegative integer $n$ define $\operatorname{rad}(n)=1$ if $n=0$ or $n=1$, and $\operatorname{rad}(n)=p_1p_2\cdots p_k$ where $p_1<p_2<\cdots <p_k$ are all prime factors of $n$. Find all polynomials $f(x)$ with nonnegative integer coefficients such that $\operatorname{rad}(f(n))$ divides $\operatorname{rad}(f(n^{\operatorname{rad}(n)}))$ for every nonnegative integer $n$.
32 replies
lyukhson
Jul 29, 2013
awesomeming327.
an hour ago
Number Theory
TheMathBob   4
N an hour ago by fe.
Source: Polish Math Olympiad 2021 2nd round p3 day 1
Positive integers $a,b,z$ satisfy the equation $ab=z^2+1$. Prove that there exist positive integers $x,y$ such that
$$\frac{a}{b}=\frac{x^2+1}{y^2+1}$$
4 replies
TheMathBob
Feb 13, 2021
fe.
an hour ago
D1040 : A general and strange result
Dattier   1
N 4 hours ago by Dattier
Source: les dattes à Dattier
Let $f \in C([0,1];[0,1])$ bijective, $f(0)=0$ and $(a_k) \in [0,1]^\mathbb N$ with $ \sum \limits_{k=0}^{+\infty} a_k$ converge.

Is it true that $\sum \limits_{k=0}^{+\infty} \sqrt{f(a_k)\times f^{-1}(a_k)}$ converge?
1 reply
Dattier
May 31, 2025
Dattier
4 hours ago
functional equation in Z
Matheo_Lucas   2
N Today at 3:02 PM by mrtheory
Find all functions \( f : \mathbb{Z} \to \mathbb{Z} \) such that

\[
x f(2f(y) - x) + y^2 f(2x - f(y)) = \frac{f(x)^2}{x} + f(y f(y))
\]
for all \( x, y \in \mathbb{Z} \) with \( x \neq 0 \).
2 replies
Matheo_Lucas
Jan 11, 2025
mrtheory
Today at 3:02 PM
Recurrence trouble
SomeonecoolLovesMaths   4
N Today at 2:48 PM by Hello_Kitty
Let $0 < x_0 < y_0$ be real numbers. Define $x_{n+1} = \frac{x_n + y_n}{2}$ and $y_{n+1} = \sqrt{x_{n+1}y_n}$.
Prove that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$ and hence find the limit.
4 replies
SomeonecoolLovesMaths
May 28, 2025
Hello_Kitty
Today at 2:48 PM
Functions
mclolikoi   3
N Today at 1:58 PM by Mathzeus1024
Let us consider f as the following function : $ f(x)= \frac {x - \sqrt{2}}{ [x  \sqrt{2} ] } $

1- Find the definition domain $ D_f $

2-Prove that $ f $ is continous on $ \sqrt{2} $

3-Study the continuity of $ f $ on $ \frac {3 \sqrt{2} }{2} $

4-Then draw the geometric representation of $ f $ on $ ] \frac {1}{ \sqrt{2} } ; 2 \sqrt{2} [ $
3 replies
mclolikoi
Sep 23, 2012
Mathzeus1024
Today at 1:58 PM
ISI UGB 2025
Entrepreneur   2
N Today at 1:46 PM by Hello_Kitty
Source: ISI UGB 2025
1.)
Suppose $f:\mathbb R\to\mathbb R$ is differentiable and $|f'(x)|<\frac 12\;\forall\;x\in\mathbb R.$ Show that for some $x_0\in\mathbb R,f(x_0)=x_0.$

3.)
Suppose $f:[0,1]\to\mathbb R$ is differentiable with $f(0)=0.$ If $|f'(x)|\le f(x)\;\forall\;x\in[0,1],$ then show that $f(x)=0\;\forall\;x.$

4.)
Let $S^1=\{z\in\mathbb C:|z|=1\}$ be the unit circle in the complex plane. Let $f:S^1\to S^1$ be the map given by $f(z)=z^2.$ We define $f^{(1)}:=f$ and $f^{(k+1)}=f\circ f^{(k)}$ for $k\ge 1.$ The smallest positive integer $n$ such that $f^n(z)=z$ is called period of $z.$ Determine the total number of points $S^1$ of period $2025.$

6.)
Let $\mathbb N$ denote the set of natural numbers, and let $(a_i,b_i), 1\le i\le 9,$ be nine distinct tuples in $\mathbb N\times\mathbb N.$ Show that there are $3$ distinct elements in the set $\{2^{a_i}3^{b_i}:1\le i\le 9\}$ whose product is a perfect cube.

8.)
Let $n\ge 2$ and let $a_1\le a_2\le\cdots\le a_n$ be positive integers such that $$\sum_{i=1}^n a_i=\prod_{i=1}^n a_i.$$Prove that $$\sum_{i=1}^n a_i\le 2n$$and determine when equality holds.
2 replies
Entrepreneur
May 27, 2025
Hello_Kitty
Today at 1:46 PM
functional analysis
ILOVEMYFAMILY   0
Today at 12:54 PM
Let $E$, $F$ be normed spaces with $E$ a Banach space. Suppose $\{A_n: E \to F\}$ is a family of continuous linear maps. Prove that the set
\[
X = \left\{ x \in E \mid \sup_{n\geq 1}|| A_n(x)||< +\infty  \right\}
\]is either of first category in $E$ or is equal to the whole space $E$.
0 replies
ILOVEMYFAMILY
Today at 12:54 PM
0 replies
Prove the statement
Butterfly   13
N Today at 9:35 AM by solyaris
Given an infinite sequence $\{x_n\} \subseteq  [0,1]$, there exists some constant $C$, for any $r>0$, among the sequence $x_n$ and $x_m$ could be chosen to satisfy $|n-m|\ge r $ and $|x_n-x_m|<\frac{C}{|n-m|}$.
13 replies
Butterfly
May 7, 2025
solyaris
Today at 9:35 AM
Limit problem
Martin.s   1
N Today at 7:47 AM by alexheinis
Find \(\lim_{n \to \infty} n \sin (2n! e \pi)\)
1 reply
Martin.s
Yesterday at 6:49 PM
alexheinis
Today at 7:47 AM
Putnam 1992 B1
sqrtX   2
N Today at 6:50 AM by de-Kirschbaum
Source: Putnam 1992
Let $S$ be a set of $n$ distinct real numbers. Let $A_{S}$ be the set of numbers that occur as averages of two distinct
elements of $S$. For a given $n \geq 2$, what is the smallest possible number of elements in $A_{S}$?
2 replies
sqrtX
Jul 18, 2022
de-Kirschbaum
Today at 6:50 AM
Expand into a Fourier series
Tip_pay   1
N Today at 1:39 AM by maths001Z
Expand the function in a Fourier series on the interval $(-\pi, \pi)$
$$f(x)=\begin{cases}
1, & -1<x\leq 0\\ 
x, & 0<x<1
\end{cases}$$
1 reply
Tip_pay
Dec 12, 2023
maths001Z
Today at 1:39 AM
Something nice
KhuongTrang   33
N May 7, 2025 by NguyenVanHoa29
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
33 replies
KhuongTrang
Nov 1, 2023
NguyenVanHoa29
May 7, 2025
Something nice
G H J
G H BBookmark kLocked kLocked NReply
Source: own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#1 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
This post has been edited 2 times. Last edited by KhuongTrang, Nov 19, 2023, 11:59 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mihaig
7391 posts
#2
Y by
Beauty. But difficult
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#19 • 6 Y
Y by MihaiT, Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Non sense post.
This post has been edited 1 time. Last edited by KhuongTrang, Dec 23, 2023, 1:30 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#31 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Something not relevant
This post has been edited 1 time. Last edited by KhuongTrang, Dec 16, 2023, 3:48 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30263 posts
#32 • 1 Y
Y by teomihai
KhuongTrang wrote:
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$a\sqrt{bc+1}+b\sqrt{ca+1}+c\sqrt{ab+1}\ge 2\sqrt{a+b+c-1}.$$
Because $$\sum_{cyc}a\sqrt{bc+1}=\sqrt{\sum_{cyc}(a^2bc+a^2+2ab\sqrt{(bc+1)(ac+1)}}\geq\sqrt{\sum_{cyc}(a^2+2ab)}=a+b+c\geq2\sqrt{a+b+c-1}.$$
This post has been edited 1 time. Last edited by arqady, Nov 19, 2023, 6:25 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#34 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Something not relevant
This post has been edited 2 times. Last edited by KhuongTrang, Dec 16, 2023, 3:48 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
42565 posts
#35
Y by
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$\sqrt{a+b+abc}+\sqrt{b+c+abc}+\sqrt{c+a+abc}\ge  2+\sqrt{2}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#43 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Something not relevant
This post has been edited 1 time. Last edited by KhuongTrang, Dec 16, 2023, 3:48 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#59 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+bc}{a+1}}+\sqrt{\frac{b+ca}{b+1}}+\sqrt{\frac{c+ab}{c+1}}\le 1+\sqrt{2}. }$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mudok
3379 posts
#60 • 1 Y
Y by arqady
arqady wrote:
KhuongTrang wrote:
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$a\sqrt{bc+1}+b\sqrt{ca+1}+c\sqrt{ab+1}\ge 2\sqrt{a+b+c-1}.$$
Because $$\sum_{cyc}a\sqrt{bc+1}=\sqrt{\sum_{cyc}(a^2bc+a^2+2ab\sqrt{(bc+1)(ac+1)}}\geq\sqrt{\sum_{cyc}(a^2+2ab)}=a+b+c\geq2\sqrt{a+b+c-1}.$$
We can directly use: $\sum a\sqrt{bc+1}\ge \sum a$ :lol:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#65 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=2.$ Prove that

$$\color{blue}{\sqrt{15a+1} +\sqrt{15b+1} +\sqrt{15c+1}\ge 3\sqrt{3}\cdot\sqrt{1+2(ab+bc+ca)}. }$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30263 posts
#66
Y by
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=2.$ Prove that

$$\color{blue}{\sqrt{15a+1} +\sqrt{15b+1} +\sqrt{15c+1}\ge 3\sqrt{3}\cdot\sqrt{1+2(ab+bc+ca)}. }$$
Holder with $(3a+1)^3$ and $uvw$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#72 • 6 Y
Y by ehuseyinyigit, Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+bc}{a+1}}+\sqrt{\frac{b+ca}{b+1}}+\sqrt{\frac{c+ab}{c+1}}\le 1+\sqrt{2}. }$$

Problem. Given non-negative real numbers satisfying $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+b}{c+1}}+\sqrt{\frac{c+b}{a+1}}+\sqrt{\frac{a+c}{b+1}}\le 2\sqrt{a+b+c}. }$$Equality holds iff $a=b=1,c=0$ or $a=b\rightarrow 0,c\rightarrow +\infty$ and any cyclic permutations.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30263 posts
#73
Y by
KhuongTrang wrote:
Problem. Given non-negative real numbers satisfying $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+b}{c+1}}+\sqrt{\frac{c+b}{a+1}}+\sqrt{\frac{a+c}{b+1}}\le 2\sqrt{a+b+c}. }$$Equality holds iff $a=b=1,c=0$ or $a=b\rightarrow 0,c\rightarrow +\infty$ and any cyclic permutations.
Because $$\sum_{cyc}\sqrt{\frac{a+b}{c+1}}\leq\sqrt{\sum_{cyc}(a+b)\sum_{cyc}\frac{1}{c+1}}\leq2\sqrt{a+b+c}.$$:-D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bellahuangcat
253 posts
#74
Y by
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$

what why does that look so easy and difficult at the same time lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ehuseyinyigit
840 posts
#75
Y by
That's the beauty of it
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bellahuangcat
253 posts
#76
Y by
ehuseyinyigit wrote:
That's the beauty of it

yeah ig
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30263 posts
#78
Y by
sqing wrote:
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$\sqrt{a+b+abc}+\sqrt{b+c+abc}+\sqrt{c+a+abc}\ge  2+\sqrt{2}$$
The following inequality is also true.
Let $a$, $b$ and $c$ be non-negative numbers such that $ab+ac+bc=1$. Prove that:
$$\sqrt{a+b+\frac{13}{14}abc}+\sqrt{b+c+\frac{13}{14}abc}+\sqrt{c+a+\frac{13}{14}abc}\ge  2+\sqrt{2}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#83 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=3.$ Prove that

$$\color{blue}{\sqrt{\frac{4}{3}(ab+bc+ca)+5}\ge \sqrt{a}+\sqrt{b}+\sqrt{c}.}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kiyoras_2001
678 posts
#84
Y by
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=3.$ Prove that
$$\color{blue}{\sqrt{\frac{4}{3}(ab+bc+ca)+5}\ge \sqrt{a}+\sqrt{b}+\sqrt{c}.}$$
After homogenizing and squaring it becomes
\[\sum a^2+8\sum ab\ge 3\sum a\sum\sqrt{ab}.\]Changing \(a\to a^2, b\to b^2, c\to c^2\) it becomes a fourth degree inequality, so is linear in \(w^3\). Thus it remains to check only the cases \(c=0\) and \(b=c=1\) which is easy.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#92 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Problem. Let $a,b,c$ be non-negative real variables with $ab+bc+ca>0.$ Prove that$$\color{black}{\frac{a^2+2ab}{4ab+bc+ca}+\frac{b^2+2bc}{4bc+ca+ab}+\frac{c^2+2ca}{4ca+ab+bc}\ge \frac{3}{2}. }$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,0,2t\right)$ where $t>0.$
This post has been edited 1 time. Last edited by KhuongTrang, Mar 28, 2025, 1:21 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jokehim
1028 posts
#93
Y by
KhuongTrang wrote:
Problem. Let $a,b,c$ be non-negative real variables with $a+b+c>0.$ Prove that$$\color{black}{\frac{a^2+2ab}{4ab+bc+ca}+\frac{b^2+2bc}{4bc+ca+ab}+\frac{c^2+2ca}{4ca+ab+bc}\ge \frac{3}{2}. }$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,0,2t\right)$ where $t>0.$

Assume that $a+b+c=1$ and set $M=a^2b+b^2c+c^2a,\ \ ab+bc+ca=q,\ \ abc=r.$ The inequality becomes$$10 M^2 - 16 M q + 12 M r - 8 q^3 + 8 q^2 - 51 q r + 63 r^2 + 10 r\ge 0$$ưhere$$\Delta_M=8 (40 q^3 - 8 q^2 + 207 q r - r (297 r + 50))<0$$which ends the proofs :D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#94 • 5 Y
Y by Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
#93 Could you please check your solution again, jokehim? I think this inequality is very hard to think of a proof in normal way.
Hope to see some ideas. Btw, it is obviously true by BW.
This post has been edited 2 times. Last edited by KhuongTrang, Mar 29, 2025, 12:05 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jokehim
1028 posts
#95
Y by
KhuongTrang wrote:
#93 Could you please check your solution again, jokehim? I think this inequality is very hard to think of a proof in normal way.
Hope to see some ideas. Btw, it is obviously true by BW.
Problem. Let $a,b,c$ be positive real variables with $a+b+c+2\sqrt{abc}=1.$ Prove that$$\frac{\sqrt{a+ab+b}}{\sqrt{ab}+\sqrt{c}}+\frac{\sqrt{b+bc+c}}{\sqrt{bc}+\sqrt{a}}+\frac{\sqrt{c+ca+a}}{\sqrt{ca}+\sqrt{b}}\ge 3.$$Equality holds iff $a=b=c=\dfrac{1}{4}.$

I don't see what's wrong with my solution :|
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nguyenhuyen_AG
3333 posts
#96
Y by
KhuongTrang wrote:
Problem. Let $a,b,c$ be non-negative real variables with $a+b+c>0.$ Prove that$$\color{black}{\frac{a^2+2ab}{4ab+bc+ca}+\frac{b^2+2bc}{4bc+ca+ab}+\frac{c^2+2ca}{4ca+ab+bc}\ge \frac{3}{2}. }$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,0,2t\right)$ where $t>0.$
We have the following estimate
\[\frac{12a(a+2b)}{4ab+bc+ca} \geqslant \frac{32a^3+3(33b+56c)a^2+3(26b^2+102bc+13c^2)a-4(4b+c)(b-2c)^2}{11[ab(a+b)+bc(b+c)+ca(c+a)]+51abc}.\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#109 • 6 Y
Y by arqady, Zuyong, NguyenVanHoa29, JK1603JK, TNKT, jokehim
Problem. Let $a,b,c$ be three non-negative real numbers with $ab+bc+ca=1.$ Prove that$$\frac{\sqrt{b+c}}{a+\sqrt{bc+1}}+\frac{\sqrt{c+a}}{b+\sqrt{ca+1}}+\frac{\sqrt{a+b}}{c+\sqrt{ab+1}}\ge \sqrt{2(a+b+c)}.$$When does equality hold?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#113 • 5 Y
Y by NguyenVanHoa29, JK1603JK, Zuyong, TNKT, jokehim
Problem. Let $a,b,c$ be three non-negative real numbers with $a+b+c=2.$ Prove that$$\sqrt{9-8ab}+\sqrt{9-8bc}+\sqrt{9-8ca}\ge 7.$$When does equality hold?
See also MSE
This post has been edited 1 time. Last edited by KhuongTrang, May 3, 2025, 2:59 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30263 posts
#114
Y by
KhuongTrang wrote:
Problem. Let $a,b,c$ be three non-negative real numbers with $a+b+c=2.$ Prove that$$\sqrt{9-8ab}+\sqrt{9-8bc}+\sqrt{9-8ca}\ge 7.$$When does equality hold?
It's known.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NguyenVanHoa29
9 posts
#115
Y by
Does mixing variables technique help here, dear arqady?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30263 posts
#116
Y by
NguyenVanHoa29 wrote:
Does mixing variables technique help here, dear arqady?
Yes, of course! It was my first solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
731 posts
#117 • 4 Y
Y by NguyenVanHoa29, arqady, TNKT, jokehim
Problem. Let $a,b,c$ be non-negative real variables with $ab+bc+ca>0.$ Prove that$$\color{black}{\sqrt{\frac{4a^{2}+5(b-c)^{2}}{b^{2}+c^{2}}}+\sqrt{\frac{4b^{2}+5(c-a)^{2}}{c^{2}+a^{2}}}+\sqrt{\frac{4c^{2}+5(a-b)^{2}}{a^{2}+b^{2}}}\ge 3\sqrt{2}\cdot \sqrt{\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}}.}$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,t,0\right)$ where $t>0.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NguyenVanHoa29
9 posts
#118
Y by
arqady wrote:
NguyenVanHoa29 wrote:
Does mixing variables technique help here, dear arqady?
Yes, of course! It was my first solution.

Can you show us your proof? Thanks
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30263 posts
#119
Y by
NguyenVanHoa29 wrote:
Can you show us your proof? Thanks
See here
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NguyenVanHoa29
9 posts
#120
Y by
May I ask how to prove the starting inequality? How does the following post link to it?
Z K Y
N Quick Reply
G
H
=
a