Problem 6: Hard inequality

by henderson, Feb 16, 2016, 7:26 PM

$$\bf\color{red}Problem \ 6 \  $$If $x,y,z>0$ and $x\sqrt{y}+y\sqrt{z}+z\sqrt{x}=3$, prove that:
\[\frac{x}{\sqrt{x+2y}}+\frac{y}{\sqrt{y+2z}}+\frac{z}{\sqrt{z+2x}}\ge\sqrt{xyz+2}.\]$$\bf\color{red}My \ solution \  $$Using $\text{Holder inequality},$ we have
\[ \left(\sum_{cyc}\frac{x}{\sqrt{x+2y}}\right)\left(\sum_{cyc}\frac{x}{\sqrt{x+2y}}\right)\left(\sum_{cyc}\frac{x(x+2y)}{3\sqrt{3}}\right)\geq \left(\frac{x}{\sqrt{3}}+\frac{y}{\sqrt{3}}+\frac{z}{\sqrt{3}}\right)^3 \]$\implies$ \[\left(\sum_{cyc}\frac{x}{\sqrt{x+2y}}\right)^2\geq (x+y+z)\]$\implies$
\[\sum_{cyc}\frac{x}{\sqrt{x+2y}}\geq \sqrt{x+y+z}.\]$\left(\boxed{1}\right)$
On the other hand, from the given condition we get $3=x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\geq 3\sqrt[3]{(xyz)^{\frac{3}{2}}},$ so $xyz\leq 1$ $\left(\boxed{2}\right)$
$\text{Cauchy-Schwarz inequality}$ implies $\frac{1}{3}\left(x+y+z\right)^3\geq (x+y+z)(xy+yz+zx)\geq (x\sqrt{y}+y\sqrt{z}+z\sqrt{x})^2=9,$ so $x+y+z\geq 3$ $\left(\boxed{3}\right)$

Finally, using $\boxed{2}$ and $\boxed{3}$ in $\boxed{1},$ we conclude
\[\sum_{cyc}\frac{x}{\sqrt{x+2y}}\geq \sqrt{x+y+z}\geq \sqrt{3}\geq \sqrt{xyz+2},\]as desired.
This post has been edited 6 times. Last edited by henderson, Sep 12, 2016, 2:41 PM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20933
  • Total comments: 32
Search Blog
a