Problem 8:Notes on Eucledian Geometry,radical axis,problem 2

by henderson, Feb 23, 2016, 5:51 PM

$$\bf\color{red}Problem \ 8 \  $$Let $BB', CC'$ be the altitudes of triangle $ABC,$ and assume that $AB\not=AC.$ Let $M$ be the midpoint of $BC,$ $H$ the orthocenter of $ABC,$ and $D$ the intersection of $BC$ and $B'C'.$ Show that $DH$ is perpendicular to $AM.$
$$\bf\color{red}{Solution}$$[asy]
unitsize(2.8cm);
pointpen=black; pathpen=rgb(0.4,0.6,0.8);
void b() {
pair A=D("A",dir(120),NNW), B=D("B",dir(200),SW), C=D("C",dir(-20),SE), Bp=D("B'",foot(B,C,A),NE), Cp=D("C'",foot(C,A,B),NW), H=D("H",orthocenter(A,B,C),S), D=D("D",extension(B,C,Bp,Cp),W), M=D("M",midpoint(B--C),S);
D(A--B--C--cycle,pathpen+linewidth(1)); D(CP(M,B),red); DPA(C--D--Bp^^B--Bp^^C--Cp^^A--M); D(D--extension(D,H,A,M),pathpen+dashed);
}
b(); pathflag=false; b();  
[/asy]
Considering the circle $BCB'C'$ centred at $M$, we get that $DH$ is the polar of $A$ $($ by Brokard theorem $),$ so the result follows.
This post has been edited 7 times. Last edited by henderson, Sep 12, 2016, 2:37 PM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20932
  • Total comments: 32
Search Blog