Problem 18: APMO 2016, Problem 3

by henderson, Jun 6, 2016, 2:37 PM

$$\bf\color{red}{Problem \ 18 }$$Let $AB$ and $AC$ be two distinct rays not lying on the same line, and let $\omega$ be a circle with center $O$ that is tangent to ray $AC$ at $E$ and ray $AB$ at $F$. Let $R$ be a point on segment $EF$. The line through $O$ parallel to $EF$ intersects line $AB$ at $P$. Let $N$ be the intersection of lines $PR$ and $AC$, and let $M$ be the intersection of line $AB$ and the line through $R$ parallel to $AC$. Prove that line $MN$ is tangent to $\omega$.
$$\bf\color{red}Solution \  1 \ $$Let $X$ be the second tangency point from $N$ to $\omega$ and $Y$ be the reflection of $F$ over $OP.$ Clearly $Y$ lies on $\omega$ and $EY$ is the diameter of $\omega,$ moreover $Y$ is the second tangency point form $P$ to $\omega.$

Let $R^*$ be the intersection of $\overline{XY}$ and $\overline{EF}.$ It's easy to see that $N,P,R^*$ lies on the polar of $EX\cap YF,$ hence we conclude that $R^*\equiv R.$

Therefore $\angle RXF=\tfrac{1}{2}\angle A=\tfrac{1}{2}\angle RMF$ (here $\angle RMF=\angle A$ follows by parallel condition), which amounts to $M$ is the center of $\odot(XRF)\implies MX=MF\implies MX$ is tangent to $\omega.$ The statement follows. $\square$
[asy]
size(7cm); pointpen=black; pathpen=black; pointfontpen=fontsize(9pt);
void b(){
pair O=D("O",origin,S);
pair E=D("E",dir(150),dir(150));
pair F=D("F",dir(30),dir(-100)*1.5);
pair A=D("A",IP(L(-E*dir(90)+E,E,5,5),L(-F*dir(-90)+F,F,5,5)),N);
pair P=D("P",IP(L(F-E,O,5,5),L(A,F,5,5)),dir(45));
pair R=D("R",6*F/11+5*E/11,dir(-130));
pair N=D("N",extension(P,R,A,E),dir(135));
pair X=D("X",IP(CP(N,E),unitcircle),dir(60));
pair M=D("M",extension(N,X,A,F),dir(45));
pair Y=D("Y",extension(X,R,E,O),dir(-60));
D(unitcircle);
D(A--E--F--cycle);
D(N--M,blue+dashed);
D(X--Y--E,red);
D(O--P--F);
D(M--R);
D(CP(M,R),dotted);
D(X--O--F);
D(Y--P,dashed);
}
b(); pathflag=false; b();
[/asy]

$$\bf\color{red}Solution \ 2 \ $$Let $ T_{\infty} $ be the infinity point on $ AE. $ From $ OP $ $ \parallel $ $ EF $ we get that the second tangent from $ P $ to $ \odot (O) $ is parallel to $ AE, $ so from the converse of Brianchon's theorem for the degenerate hexagon $ MFPT_{\infty}EN $ we conclude that $ MN $ is tangent to $ \omega. $
This post has been edited 6 times. Last edited by henderson, Sep 11, 2016, 7:52 PM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20933
  • Total comments: 32
Search Blog
a