Problem 32: PEN, Linear Recurrences, Problem 13

by henderson, Jul 2, 2016, 11:21 AM

$$\bf\color{red}Problem \ 32$$The sequence $\{x_n\}_{n\geq 1}$ is defined by
\[x_1=x_2=1, x_{n+2}=14x_{n+1}-x_n-4.\]Prove that $x_n$ is always a perfect square.
$$\bf\color{red}My \ solution$$$\color{green}\textbf{Claim.}$ \begin{align*}
&4\sqrt{x_{n+1}}-\sqrt{x_n}=\sqrt{x_{n+2}}\   (\bigstar)
\end{align*}for all $n\in \mathbb{N}.$

$\color{green}\textbf{Proof.}$ We will prove this relation by induction.
For $n=1,$
\begin{align*}
&4\sqrt{x_{2}}-\sqrt{x_1}=\sqrt{x_{n+3}} \iff 4\sqrt{1}-\sqrt{1}=\sqrt{9},
\end{align*}which is obvious.
Now, let us assume that $(\bigstar)$ holds, and then prove it for $n+1.$ So, it suffices to prove the following equation:
\begin{align*}
&4\sqrt{x_{n+2}}-\sqrt{x_{n+1}}=\sqrt{x_{n+3}}.\  (\blacksquare)
\end{align*}
Since \[4\sqrt{x_{n+1}}-\sqrt{x_n}=\sqrt{x_{n+2}},\]we conclude
\[4\sqrt{x_{n+1}}=\sqrt{x_n}+\sqrt{x_{n+2}}\]$\Longrightarrow$
\[16x_{n+1}=x_n+x_{n+2}+2\sqrt{x_n\cdot x_{n+2}}\]$\Longrightarrow$
\[16x_{n+1}=14x_{n+1}-4+2\sqrt{x_n\cdot x_{n+2}}\]$\Longrightarrow$
\[x_{n+1}+2=\sqrt{x_n\cdot x_{n+2}}\]$\Longrightarrow$
\begin{align*}
&x^2_{n+1}+4x_{n+1}+4=x_n\cdot x_{n+2}. \ (\clubsuit)
\end{align*}
Let's prove $(\blacksquare)$ using $(\clubsuit):$
\[4\sqrt{x_{n+2}}-\sqrt{x_{n+1}}=\sqrt{x_{n+3}}\]$\iff$
\[4\sqrt{x_{n+2}}=\sqrt{x_{n+1}}+\sqrt{x_{n+3}}\]$\iff$
\[16x_{n+2}=x_{n+1}+x_{n+3}+2\sqrt{x_{n+1}\cdot x_{n+3}}\]$\iff$
\[16x_{n+2}=14x_{n+2}-4+2\sqrt{x_{n+1}\cdot x_{n+3}}\]$\iff$
\[x_{n+2}+2=\sqrt{x_{n+1}\cdot x_{n+3}}\]$\iff$
\begin{align*}
&x^2_{n+2}+4x_{n+2}+4=x_{n+1}\cdot x_{n+3}
\end{align*}$\iff$
\[x_{n+2}\cdot(x_{n+2}+4)+4=x_{n+1}\cdot x_{n+3}\]$\iff$
\[x_{n+2}\cdot(14x_{n+1}-x_n)+4=x_{n+1}\cdot x_{n+3}\]$\iff$
\[14x_{n+1}x_{n+2}-x_nx_{n+2}+4=x_{n+1}\cdot x_{n+3}\]$\iff$
\begin{align*}
&14x_{n+1}x_{n+2}-(x^2_{n+1}+4x_{n+1}+4)+4=x_{n+1}\cdot x_{n+3} \ (I \ used \ \clubsuit \ here)
\end{align*}$\iff$
\[14x_{n+1}x_{n+2}-x^2_{n+1}-4x_{n+1}=x_{n+1}\cdot x_{n+3}\]\[14x_{n+2}-x_{n+1}-4=x_{n+3},\]which is clear because of the given condition
\[x_{n+2}=14x_{n+1}-x_n-4\]for all $n\in \mathbb{N}.$
The last step: Since the first $2$ terms are perfect squares and there is a linear relationship between $3$ consecutive $\sqrt{x_i}$-s, the conclusion follows. $\square$
This post has been edited 6 times. Last edited by henderson, Sep 11, 2016, 10:50 AM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20932
  • Total comments: 32
Search Blog
a