Problem 31: PEN, Linear Recurrences, Problem 12

by henderson, Jul 1, 2016, 4:36 PM

$$\bf\color{red}Problem \ 31$$The sequence $\{ a_n \}_{n\geq 1}$ is defined by
\[a_1=1, a_2=12, a_3=20, a_{n+3}=2a_{n+2}+2a_{n+1}-a_n.\]Prove that $1+4a_na_{n+1}$ is perfect square for all $n \in \mathbb{N}.$
$$\bf\color{red}My \ solution$$$\color{green}\textbf{Claim.}$ \begin{align*}
&1+4a_na_{n+1}=(a_{n+2}-a_{n+1}-a_n)^2
\end{align*}for all $n \in \mathbb{N}.$
$\color{green}\textbf{Proof.}$ \[1+4a_na_{n+1}=(a_{n+2}-a_{n+1}-a_n)^2\]$\iff$
\[1+4a_na_{n+1}=a^2_{n+2}+(a^2_{n+1}+a^2_n+2a_{n+1}a_n)-2a_{n+2}(a_{n+1}+a_n)\]$\iff$
\begin{align*}
 &a^2_{n+2}+a^2_{n+1}+a^2_n-2a_{n+2}a_{n+1}-2a_{n+1}a_n-2a_na_{n+2}=1.\ (\bigstar)
\end{align*}We will prove $(\bigstar)$ by induction.
For $n=1,$ the result is obvious.
Now, let us assume that $(\bigstar)$ is true and then prove it for $n+1.$ Or, using mathematical symbols, we just need to prove the following equation:
\[a^2_{n+3}+a^2_{n+2}+a^2_{n+1}-2a_{n+3}a_{n+2}-2a_{n+2}a_{n+1}-2a_{n+1}a_{n+3}=1.\]$\iff$
\begin{align*}
 &a^2_{n+2}+a^2_{n+1}+a^2_n-2a_{n+2}a_{n+1}-2a_{n+1}a_n-2a_na_{n+2}=\\ 
 &=a^2_{n+3}+a^2_{n+2}+a^2_{n+1}-2a_{n+3}a_{n+2}-2a_{n+2}a_{n+1}-2a_{n+1}a_{n+3}\\
\end{align*}$\iff$
\[a^2_n-2a_{n+1}a_n-2a_na_{n+2}=a^2_{n+3}-2a_{n+3}a_{n+2}-2a_{n+1}a_{n+3}\]$\iff$
\[a_n(a_n-2a_{n+1}-2a_{n+2})=a_{n+3}(a_{n+3}-2a_{n+2}-2a_{n+1}).\]But the given condition implies
\[a_n-2a_{n+1}-2a_{n+2}=-a_{n+3}\]and \[a_{n+3}-2a_{n+2}-2a_{n+1}=-a_n,\]so
\[a^2_n-2a_{n+1}a_n-2a_na_{n+2}=a^2_{n+3}-2a_{n+3}a_{n+2}-2a_{n+1}a_{n+3}\]$\iff$
\[a_n\cdot (-a_{n+3})=a_{n+3}\cdot (-a_n),\]which is true.
We are done! :-D
This post has been edited 4 times. Last edited by henderson, Sep 11, 2016, 10:51 AM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20930
  • Total comments: 32
Search Blog
a