Properties related to the orthocenters of BPC, CPA, APB

by henderson, Jun 4, 2016, 8:54 PM

$$\bf\color{red}Properties\ related \ to \ the \ orthocenters \ of \ \triangle BPC, \triangle CPA\ and \ \triangle APB$$$=============================================================================================$
In this topic, I'll prove some properties related to the orthocenter $ J_a, $ $ J_b, $ $ J_c $ of $ \triangle BPC, $ $ \triangle CPA, $ $ \triangle APB, $ respectively (where $ P $ is an arbitrary point). Note that all symbols in this post bear the same meaning (except $ (\spadesuit) $).

Property 1 : Let $ Q $ be the isogonal conjugate of $ P $ WRT $ \triangle ABC $ and let $ \triangle Q_aQ_bQ_c $ be its pedal triangle WRT $ \triangle ABC. $ Then $ \triangle Q_aQ_bQ_c $ is inscribed in $ \triangle J_aJ_bJ_c $ (i.e. $ Q_a, $ $ Q_b, $ $ Q_c $ lies on $ J_bJ_c, $ $ J_cJ_a, $ $ J_aJ_b, $ respectively.).

Proof : Let $ \triangle P_AP_BP_C $ be the antipedal triangle of $ P $ WRT $ \triangle ABC. $ Since $ A, $ $ C, $ $ P, $ $ P_B $ lie on a circle with diameter $ PP_B, $ so $ \measuredangle PP_BP_C $ $ = $ $ \measuredangle PCA $ $ = $ $ \measuredangle BCQ. $ Similarly, we can prove $ \measuredangle PP_CP_B $ $ = $ $ \measuredangle CBQ, $ so we get $ \triangle PP_BP_C $ $ \cup $ $ A $ $ \stackrel{-}{\sim} $ $ \triangle QCB $ $ \cup $ $ Q_a. $ Combining $ BJ_c $ $ \stackrel{\parallel}{=} $ $ P_CA, $ $ CJ_b $ $ \stackrel{\parallel}{=} $ $ P_BA $ $ \Longrightarrow $ $ \tfrac{BQ_a}{CQ_a} $ $ = $ $ \tfrac{BJ_c}{CJ_b}. $ i.e. $ Q_a $ $ \in $ $ J_bJ_c. $ $ \blacksquare $
____________________________________________________________
Property 2 : Let $ H_P $ be the orthocenter of $ \triangle P_AP_BP_C $ and let $ M $ be the midpoint of $ PH_P. $ Then the anticomplement $ T $ of $ M $ WRT $ \triangle ABC $ is the orthocenter of $ \triangle AJ_bJ_c, $ $ \triangle BJ_cJ_a, $ $ \triangle CJ_aJ_b. $

Proof : Let $ G $ be the centroid of $ \triangle ABC. $ Clearly, $ G $ is the centroid of $ \triangle PTH_P, $ so the midpoint of $ TH_P $ is the complement of $ P $ WRT $ \triangle ABC. $ Notice $ J_a $ is the reflection of $ P_A $ in the midpoint of $ BC $ we get $ J_aT $ $ \parallel $ $ P_AH_P $ $ \Longrightarrow $ $ J_aT $ $ \parallel $ $ AP. $ Analogously, we can prove $ J_bT $ $ \parallel $ $ BP $ and $ J_cT $ $ \parallel $ $ CP, $ so $ T $ is the orthocenter of $ \triangle AJ_bJ_c, $ $ \triangle BJ_cJ_a, $ $ \triangle CJ_aJ_b. $ $ \blacksquare $
____________________________________________________________
Property 3 : Let $ K_a, $ $ K_b, $ $ K_c $ be the orthocenter of $ \triangle BQC, $ $ \triangle CQA, $ $ \triangle AQB, $ respectively. Then the A-altitude of $ \triangle ABC, $ $ J_bJ_c, $ $ K_bK_c $ are concurrent (similar for $ (J_cJ_a , K_cK_a) $ and $ (J_aJ_b , K_aK_b) $).

Proof : Let $ AP $ cuts $ \odot (BPC) $ at $ R_a $ and let $ T_a $ be the projection of $ R_a $ on $ BC $ (define $ R_b, $ $ R_c, $ $ T_b, $ $ T_c $ similarly). Let $ H_A, $ $ H_a $ be the orthocenter of $ \triangle P_ABC, $ $ \triangle R_aBC, $ respectively. From $ \measuredangle R_aBC $ $ = $ $ \measuredangle R_aPC $ $ = $ $ \measuredangle P_CP_BP_A, $ $ \measuredangle R_aCB $ $ = $ $ \measuredangle R_aPB $ $ = $ $ \measuredangle P_BP_CP_A $ $ \Longrightarrow $ $ \triangle R_aBC $ $ \cup $ $ H_a $ $ \stackrel{-}{\sim} $ $ \triangle P_AP_BP_C $ $ \cup $ $ H_P, $ so notice $ P_AH_A $ $ \stackrel{\parallel}{=} $ $ R_aH_a $ we get $$ \frac{P_AH_A}{P_AH_P} = \frac{\text{dist}(R_a,BC)}{\text{dist}(P_A,P_BP_C)} = \frac{R_aT_a}{R_aA}, $$hence $ \triangle P_AH_AH_P, $ $ \triangle R_aT_aA $ are homothetic $ \Longrightarrow $ $ AT_a $ is parallel to the Steiner line $ H_AH_P $ of the complete quadrilateral $ \mathcal{Q} $ formed by $ \triangle P_AP_BP_C $ and $ BC. $

Let $ \triangle P_aP_bP_c $ be the pedal triangle of $ P $ WRT $ \triangle ABC. $ Let $ A^*, $ $ B^*, $ $ C^* $ be the isotomic conjugate of $ A, $ $ B, $ $ C $ WRT $ (P_B,P_C), $ $ (P_C,P_A), $ $ (P_A,P_B), $ respectively. From $ P_AB^* $ $ \stackrel{\parallel}{=} $ $ BP_C $ $ \stackrel{\parallel}{=} $ $ AJ_c, $ $ P_AC^* $ $ \stackrel{\parallel}{=} $ $ CP_B $ $ \stackrel{\parallel}{=} $ $ AJ_b $ we get $ \triangle AJ_bJ_c $ and $ \triangle P_AC^*B^* $ are congruent and homothetic, so $ J_bJ_c $ $ \stackrel{\parallel}{=} $ $ B^*C^* $ $ \Longrightarrow $ $ J_bJ_c $ is parallel to the Newton line of $ \mathcal{Q}, $ hence $ AT_a $ $ \perp $ $ J_bJ_c. $

Let the perpendicular from $ P_a $ to $ J_bJ_c $ cuts the A-altitude of $ \triangle ABC $ at $ S_a $ and let $ U $ $ \equiv $ $ PP_a $ $ \cap $ $ AT_a. $ Since $$ \frac{UP}{AP} = \frac{T_aR_a}{AR_a} = \frac{\text{dist}(R_a,BC)}{\text{dist}(P_A,P_BP_C)} = \frac{BC}{P_BP_C} = \frac{QQ_a}{AP}, $$so $ AS_a $ $ = $ $ PP_a $ $ + $ $ QQ_a. $ Similarly, we can prove $ Q_aS_a $ $ \perp $ $ K_bK_c, $ so notice the intersection of $ J_bJ_c, $ $ K_bK_c $ is the orthocenter of $ \triangle P_aQ_aS_a $ we conclude that the intersection of $ J_bJ_c $ and $ K_bK_c $ lies on the A-altitude of $ \triangle ABC. $ $ \blacksquare $

From the proof above we get the following corollaries :

Corollary 3.1 : $ \triangle T_aT_bT_c $ is the cevian triangle of $ T $ WRT $ \triangle ABC. $

Corollary 3.2 : $ \triangle J_aJ_bJ_c $ and $ \triangle A^*B^*C^* $ are congruent and homothetic.
____________________________________________________________
Property 4 : $ J_bK_c $ $ \parallel $ $ J_cK_b, $ $ J_cK_a $ $ \parallel $ $ J_aK_c, $ $ J_aK_b $ $ \parallel $ $ J_bK_a. $

Proof : Let $ AP $ cuts $ \odot (ABC) $ again at $ A_P $ and $ A_P^* $ be the projection of $ A_P $ on $ BC. $ Note that $ \tfrac{AP}{PA_P} $ $ = $ $ \tfrac{\text{dist}(Q,BC)}{\text{dist}(A_P,BC)} $ (See here (Lemma at post #4) or here (Lemma)), so we get $$\frac{PU}{A_PA_P^*}=\frac{\text{dist}(Q,BC)}{\text{dist}(A_P,BC)}=\frac{AP}{PA_P} \Longrightarrow PA_P^*\parallel AU \parallel P_aS_a. $$Analogously, if $ AQ $ cuts $ \odot (ABC) $ again at $ A_Q $ and $ A_Q^* $ is the projection of $ A_Q $ on $ BC, $ then $ QA_Q^* $ $ \parallel $ $ Q_aS_a. $ Let $ V_a $ (on the A-altitude of $ \triangle ABC $) be the intersection of $ J_bJ_c $ and $ K_bK_c. $ Let $ \infty_{\varsigma} $ be the point at infinity with direction $ \varsigma . $ Since $$ A(J_b,J_c; V_a,\infty_{ \parallel J_bJ_c}) = P(C,B;\infty_{ \parallel BC},A_P^*) = Q(B,C;\infty_{ \parallel BC},A_Q^*) = A(K_c,K_b;V_a,\infty_{ \parallel K_bK_c}), $$so we conclude that $ \tfrac{J_bV_a}{J_cV_a} $ $ = $ $ \tfrac{K_cV_a}{K_bV_a} $ $ \Longrightarrow $ $ J_bK_c $ $ \parallel $ $ J_cK_b. $ $ \blacksquare $
____________________________________________________________
Property 5 : $ \triangle J_aJ_bJ_c $ and $ \triangle K_aK_bK_c $ are cyclologic.

Proof : Let $ K $ be the second intersection of $ \odot (J_bK_cK_a) $ and $ \odot (J_cK_aK_b). $ Since $$ \measuredangle K_bKK_c = \measuredangle K_bKK_a + \measuredangle K_aKK_c = \measuredangle K_bJ_cK_a + \measuredangle K_aJ_bK_c = \measuredangle J_bK_cJ_a + \measuredangle J_aK_bJ_c = \measuredangle K_bJ_aK_c, $$so $ K $ lies on $ \odot (J_aK_bK_c). $ i.e. $ \odot (J_aK_bK_c), $ $ \odot (J_bK_cK_a), $ $ \odot (J_cK_aK_b) $ are concurrent at $ K. $

Analogously, we can prove $ \odot (K_aJ_bJ_c), $ $ \odot (K_bJ_cJ_a), $ $ \odot (K_cJ_aJ_b) $ are concurrent at $ J. $ $ \blacksquare $
____________________________________________________________
Property 6 : Let $ X_a $ $ \equiv $ $ P_bP_c $ $ \cap $ $ Q_bQ_c, $ $ X_b $ $ \equiv $ $ P_cP_a $ $ \cap $ $ Q_cQ_a, $ $ X_c $ $ \equiv $ $ P_aP_b $ $ \cap $ $ Q_aQ_b. $ Then $ (J_a,K_a), $ $ (J_b,K_b), $ $ (J_c,K_c) $ lie on $ X_bX_c, $ $ X_cX_a, $ $ X_aX_b, $ respectively.

Proof : It is well-known that $ AX_a $ $ \parallel $ $ BX_b $ $ \parallel $ $ CX_c $ ($\perp PQ$), so from Pappus's theorem for $ \overline{Q_a B C}, $ $ \overline{\infty_{\perp PQ} \infty_{\perp BP} \infty_{\perp CP}} $ $ \Longrightarrow $ $ J_a, $ $ X_b, $ $ X_c $ are collinear. Similarly, we can prove $ K_a $ $ \in $ $ X_bX_c, $ so $ J_a, $ $ K_a, $ $ X_b, $ $ X_c $ are collinear. $ \blacksquare $
____________________________________________________________
$ (\spadesuit) $ Before stating property 7, we recall following two lemmas.

Lemma 1 : Given a hexagon $ A_1B_2C_1A_2B_1C_2 $ s.t. $ B_2C_1 $ $ \parallel $ $ B_1C_2, $ $ C_2A_1 $ $ \parallel $ $ C_1A_2, $ $ A_2B_1 $ $ \parallel $ $ A_1B_2. $ Let $ X_1 $ be the intersection of $ \odot (A_2B_1C_1), $ $ \odot (A_1B_2C_1), $ $ \odot (A_1B_1C_2) $ and $ X_2 $ be the intersection of $ \odot (A_1B_2C_2), $ $ \odot (A_2B_1C_2), $ $ \odot (A_2B_2C_1). $ Then $$ A_1X_1 \parallel A_2X_2, B_1X_1 \parallel B_2X_2, C_1X_1 \parallel C_2X_2. $$Proof : Let $ D_1 $ $ \in $ $ \odot (A_2B_1C_1) $ be the point s.t. $ \measuredangle D_1B_1C_1 $ $ = $ $ \measuredangle A_2B_1C_2, $ $ \measuredangle D_1C_1B_1 $ $ = $ $ \measuredangle A_2C_1B_2 $ and $ D_2 $ $ \in $ $ \odot (A_1B_2C_2) $ be the point s.t. $ \measuredangle D_2B_2C_2 $ $ = $ $ \measuredangle A_1B_2C_1, $ $ \measuredangle D_2C_2B_2 $ $ = $ $ \measuredangle A_1C_2B_1. $ From $ \measuredangle D_1X_1B_1 $ $ = $ $ \measuredangle D_1C_1B_1 $ $ = $ $ \measuredangle A_2C_1B_2 $ $ = $ $ \measuredangle A_1C_2B_1 $ $ = $ $ \measuredangle A_1X_1B_1 $ $ \Longrightarrow $ $ A_1 , $ $ D_1 , $ $ X_1 $ are collinear. Similarly, we can prove $ A_2, $ $ D_2, $ $ X_2 $ are collinear.

Since $ \triangle B_1C_1D_1 $ $ \stackrel{+}{\sim} $ $ \triangle B_2C_2D_2, $ so notice $ \measuredangle A_2B_1D_1 $ $ = $ $ \measuredangle B_2C_1B_1, $ $ \measuredangle A_1B_2D_2 $ $ = $ $ \measuredangle C_1B_2C_2 $ we get $$ \frac{A_1D_2}{A_2D_1} = \frac{B_2C_2}{B_1C_1} \cdot \frac{ \sin \angle C_1B_2C_2}{\sin \angle B_2C_1B_1} =  \frac  {B_2C_2}{B_1C_1} \cdot \frac{B_1C_1}{B_2C_2} = 1. $$Combining $ \measuredangle C_2A_1D_2 $ $ = $ $ \measuredangle C_2B_2D_2 $ $ = $ $ \measuredangle C_1B_1D_1 $ $ = $ $ \measuredangle C_1A_2D_1 $ we get $ A_1D_2 $ $ \stackrel{\parallel}{=} $ $ A_2D_1 $ $\Longrightarrow $ $ A_1X_1 $ $ \parallel $ $ A_2X_2. $

Lemma 2 (well-known) : Given two (not homothetic) triangles $ \triangle A_1B_1C_1, $ $ \triangle A_2B_2C_2 $. If $ L $ is a point s.t. the parallel from $ A_2, $ $ B_2, $ $ C_2 $ to $ A_1L, $ $ B_1L, $ $ C_1L $, resp. are concurrent, then $ L $ lies on a circumconic of $ \triangle A_1B_1C_1 $ or the line at infinity.
____________________________________________________________
Property 7 : $ J, $ $ K, $ $ J_a, $ $ K_a, $ $ J_b, $ $ K_b, $ $ J_c, $ $ K_c, $ $ P, $ $ Q $ lie on a conic.

Proof : From Lemma 1 $ \Longrightarrow $ $ JJ_a $ $ \parallel $ $ KK_a, $ $ JJ_b $ $ \parallel $ $ KK_b, $ $ JJ_c $ $ \parallel $ $ KK_c, $ so from Lemma 2 we get the conclusion. $ \blacksquare $
$=============================================================================================$

$\blacktriangleright$ Link to the topic
This post has been edited 4 times. Last edited by henderson, Jun 4, 2016, 8:59 PM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20931
  • Total comments: 32
Search Blog
a