Problem 65: IMO Shortlist 2015, G3

by henderson, May 7, 2017, 5:21 PM

$$\color{red}\bf{Problem \ 65} $$Let $ABC$ be a triangle with $\angle{C} = 90^{\circ}$, and let $H$ be the foot of the altitude from $C$. A point $D$ is chosen inside the triangle $CBH$ so that $CH$ bisects $AD$. Let $P$ be the intersection point of the lines $BD$ and $CH$. Let $\omega$ be the semicircle with diameter $BD$ that meets the segment $CB$ at an interior point. A line through $P$ is tangent to $\omega$ at $Q$. Prove that the lines $CQ$ and $AD$ meet on $\omega$.
$$\color{red}\bf{Solution} $$[asy]
unitsize(3cm);
pointfontpen=fontsize(10);
pointpen=black; pathpen=rgb(0.4,0.6,0.8);

pair B=dir(0), A=-B, C=dir(110), H=foot(C,A,B), N=WP(D(C--H),0.85), D=2*N-A, P=extension(B,D,C,H), Q=tangent(P,(B+D)/2,length(B-D)/2,2), K=extension(A,D,C,Q), M=(B+D)/2;

D(CR((0,0),1,0,180),heavygreen); D(arc(M,length(K-M),degrees(B-M),degrees(D-M),CCW),red);
D(A--B--C--cycle,linewidth(1)+pathpen); DPA(D--B--Q--cycle^^Q--P--D^^H--C); D(C--K--A,dashed+pathpen);

/*Angle marks and pathticks*/
markscalefactor=0.01;
DPA(rightanglemark(B,C,A)^^rightanglemark(B,H,C)^^rightanglemark(B,Q,D));
/* Dot and label points */
D("A",A,W);
D("B",B,E);
D("C",C,dir(C));
D("D",D,SSE);
D("H",H);
D("K",K,dir(K));
D("P",P,dir(P));
D("Q",Q,dir(Q));
[/asy]
Let $K=AD\cap CQ$. We claim that $\triangle ABC\sim\triangle DBQ$. Indeed, $\angle BCA=\angle BQD=90^{\circ}$ and since $\triangle PDQ\sim\triangle PQB$ and $CH$ bisects $\overline{AD}$, $$\frac{DQ^2}{BQ^2}=\frac{PQ^2}{PB^2}=\frac{PD}{PB}=\frac{AH}{BH}=\tan^2B=\frac{AC^2}{BC^2},$$and our claim holds. Thus $B$ is the center of the spiral similarity $\overline{AD}\to\overline{CQ}$, so $\angle KDB=\angle KQB$, and $K$ lies on $\omega$.
This post has been edited 1 time. Last edited by henderson, Jul 3, 2017, 7:41 PM

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20934
  • Total comments: 32
Search Blog
a