Problem 38: Beautiful inequality

by henderson, Jul 11, 2016, 8:24 PM

$$\color{red}\bf{Problem\ 38}$$Let $a,b,c$ be positive real numbers. Prove that \[\frac{(a+b+c)^3}{3(a^2+b^2+c^2)} \geq \frac{ab(a+b)}{a^2+b^2}+\frac{bc(b+c)}{b^2+c^2}+\frac{ca(c+a)}{c^2+a^2}.\]$$\color{red}\bf{My\ solution}$$\[\frac{(a+b+c)^3}{3(a^2+b^2+c^2)} \geq \frac{ab(a+b)}{a^2+b^2}+\frac{bc(b+c)}{b^2+c^2}+\frac{ca(c+a)}{c^2+a^2}\]$\iff$
\[\frac{(a+b+c)^3}{3(a^2+b^2+c^2)}-(a+b+c) \geq \left(\frac{ab(a+b)}{a^2+b^2}-\frac{a+b}{2}\right)+\left(\frac{bc(b+c)}{b^2+c^2}-\frac{b+c}{2}\right)+\left(\frac{ca(c+a)}{c^2+a^2}-\frac{c+a}{2}\right)\]$\iff$
\[\frac{-(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)}{3(a^2+b^2+c^2)} \geq \frac{-(a+b)(a-b)^2}{2(a^2+b^2)}+\frac{-(b+c)(b-c)^2}{2(b^2+c^2)}+\frac{-(c+a)(c-a)^2}{2(c^2+a^2)}\]$\iff$
\[\frac{2(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)}{3(a^2+b^2+c^2)} \leq \frac{(a+b)(a-b)^2}{a^2+b^2}+\frac{(b+c)(b-c)^2}{b^2+c^2}+\frac{(c+a)(c-a)^2}{c^2+a^2}\]$\iff$
\[2(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)\leq \sum_{cyc}3(a+b)(a-b)^2+\sum_{cyc}\frac{3c^2(a+b)(a-b)^2}{a^2+b^2}\]$\iff$
\[\sum_{cyc}2c(a-b)^2 \leq \sum_{cyc}(a+b)(a-b)^2+\sum_{cyc}\frac{3c^2(a+b)(a-b)^2}{a^2+b^2}.\]Here $\color{green}\textbf{AM-GM}$ helps:
\[\sum_{cyc}(a+b)(a-b)^2+\sum_{cyc}\frac{3c^2(a+b)(a-b)^2}{a^2+b^2}\geq \sum_{cyc}2\sqrt{\frac{3c^2(a+b)^2(a-b)^4}{a^2+b^2}}\geq \sum_{cyc}2\sqrt{3c^2(a-b)^4}\geq \sum_{cyc}2\sqrt{c^2(a-b)^4}=\sum_{cyc}2c(a-b)^2,\]as desired.
This post has been edited 4 times. Last edited by henderson, Sep 11, 2016, 10:45 AM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20931
  • Total comments: 32
Search Blog
a