Problem 27: Inequality by Vasile Cirtoaje (2005)

by henderson, Jun 23, 2016, 1:52 PM

$$\bf\color{red}Problem \ 27$$Let $a,b,c$ be non-negative real numbers such that $ab+bc+ca=3.$ Prove that
\[\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+b^2}\geq \frac{3}{2}.\]$$\bf\color{red}My \ solution$$\[\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+b^2}\geq \frac{3}{2}\]$\color{blue}\iff$
\[\frac{3+2(a^2+b^2+c^2)+(a^2b^2+b^2c^2+c^2a^2)}{(1+a^2)(1+b^2)(1+c^2)}\geq \frac{3}{2}\]$\color{blue}\iff$
\[6+4(a^2+b^2+c^2)+2(a^2b^2+b^2c^2+c^2a^2)\geq 3+3(a^2+b^2+c^2)+3(a^2b^2+b^2c^2+c^2a^2)+3a^2b^2c^2\]$\color{blue}\iff$
\[\color{blue}3+(a^2+b^2+c^2)\geq (a^2b^2+b^2c^2+c^2a^2)+3a^2b^2c^2.\]Now, let's make the inequality homogenous using $ab+bc+ca=3:$
\[\color{red}(ab+bc+ca)^3+(ab+bc+ca)^2(a^2+b^2+c^2)\geq 3(ab+bc+ca)(a^2b^2+b^2c^2+c^2a^2)+27a^2b^2c^2\]$\color{blue}\iff$
$\color{red}a^3b^3+b^3c^3+c^3a^3+3(ab+bc)(bc+ca)(ca+ab)+(a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c))(a^2+b^2+c^2)\geq 3(a^3b^3+b^3c^3+c^3a^3)+3abc(a^2b+b^2c+c^2a)+3abc(a^2c+b^2a+c^2b)+27a^2b^2c^2$ $\color{blue}\iff$
$\color{red}a^3b^3+b^3c^3+c^3a^3+3abc(a^2c+b^2a+c^2b)+3abc(a^2b+b^2c+c^2a)+6a^2b^2c^2+(a^4b^2+b^4c^2+c^4a^2)+(a^4c^2+b^4a^2+c^4b^2)+3a^2b^2c^2+2abc(a^3+b^3+c^3)+2abc(a^2b+b^2c+c^2a)+2abc(a^2c+b^2a+c^2b)\geq 3(a^3b^3+b^3c^3+c^3a^3)+3abc(a^2b+b^2c+c^2a)+3abc(a^2c+b^2a+c^2b)+27a^2b^2c^2$
$\color{blue}\iff$
$\color{red}(a^4b^2+b^4c^2+c^4a^2)+(a^4c^2+b^4a^2+c^4b^2)+2abc(a^3+b^3+c^3)+2abc(a^2b+b^2c+c^2a)+2abc(a^2c+b^2a+c^2b)\geq 2(a^3b^3+b^3c^3+c^3a^3)+18a^2b^2c^2.$
But, the last inequality is obvious since
\[(a^4b^2+b^4c^2+c^4a^2)+(a^4c^2+b^4a^2+c^4b^2)\geq 2(a^3b^3+b^3c^3+c^3a^3)\]and
\[2abc(a^3+b^3+c^3)+2abc(a^2b+b^2c+c^2a)+2abc(a^2c+b^2a+c^2b)\geq 18a^2b^2c^2.\]We are done! :-D
This post has been edited 1 time. Last edited by henderson, Sep 11, 2016, 7:03 PM

Comment

0 Comments

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20933
  • Total comments: 32
Search Blog
a