Unexpecredly Quick-Solve Inequality

by Primeniyazidayi, May 28, 2025, 5:18 AM

Inspired by Adhyayan Jana

by sqing, May 28, 2025, 4:35 AM

Let $a,b,c,d>0,a^2 + d^2+ad = b^2 + c^2  $ aand $ a^2 + b^2 = c^2 + d^2+cd$ Prove that $$ \frac{ab+cd}{ad+bc} =1$$

Inspired by Adhyayan Jana

by sqing, May 28, 2025, 2:38 AM

Let $a,b,c,d>0,a^2 + d^2-ad = (b + c)^2 $ aand $ a^2 +c^2 = b^2 + d^2.$ Prove that$$ \frac{ab+cd}{ad+bc} \geq \frac{ 4}{5}$$Let $a,b,c,d>0,a^2 + d^2-ad = b^2 + c^2 + bc  $ aand $ a^2 +c^2 = b^2 + d^2.$ Prove that$$ \frac{ab+cd}{ad+bc} \geq \frac{\sqrt 3}{2}$$Let $a,b,c,d>0,a^2 + d^2 - ad = b^2 + c^2 + bc $ aand $ a^2 + b^2 = c^2 + d^2.$ Prove that $$ \frac{ab+cd}{ad+bc} =\frac{\sqrt 3}{2}$$
This post has been edited 4 times. Last edited by sqing, 4 hours ago

Strange circles in an orthocenter config

by VideoCake, May 26, 2025, 5:10 PM

Let \(\overline{AD}\) and \(\overline{BE}\) be altitudes in an acute triangle \(ABC\) which meet at \(H\). Suppose that \(DE\) meets the circumcircle of \(ABC\) at \(P\) and \(Q\) such that \(P\) lies on the shorter arc of \(BC\) and \(Q\) lies on the shorter arc of \(CA\). Let \(AQ\) and \(BE\) meet at \(S\). Show that the circumcircles of \(BPE\) and \(QHS\) and the line \(PH\) concur.

Problem 7

by SlovEcience, May 14, 2025, 11:03 AM

Consider the sequence \((u_n)\) defined by \(u_0 = 5\) and
\[
u_{n+1} = \frac{1}{2}u_n^2 - 4 \quad \text{for all } n \in \mathbb{N}.
\]a) Prove that there exist infinitely many positive integers \(n\) such that \(u_n > 2020n\).

b) Compute
\[
\lim_{n \to \infty} \frac{2u_{n+1}}{u_0u_1\cdots u_n}.
\]

Impossible Infinite Sequence

by Rijul saini, May 31, 2024, 4:16 AM

Let $P(x) \in \mathbb{Q}[x]$ be a polynomial with rational coefficients and degree $d\ge 2$. Prove there is no infinite sequence $a_0, a_1, \ldots$ of rational numbers such that $P(a_i)=a_{i-1}+i$ for all $i\ge 1$.

Proposed by Pranjal Srivastava and Rohan Goyal
This post has been edited 1 time. Last edited by Rijul saini, May 31, 2024, 6:52 AM

Easy Taiwanese Geometry

by USJL, Jan 31, 2024, 6:27 AM

Suppose $O$ is the circumcenter of $\Delta ABC$, and $E, F$ are points on segments $CA$ and $AB$ respectively with $E, F \neq A$. Let $P$ be a point such that $PB = PF$ and $PC = PE$.
Let $OP$ intersect $CA$ and $AB$ at points $Q$ and $R$ respectively. Let the line passing through $P$ and perpendicular to $EF$ intersect $CA$ and $AB$ at points $S$ and $T$ respectively. Prove that points $Q, R, S$, and $T$ are concyclic.

Proposed by Li4 and usjl
This post has been edited 1 time. Last edited by USJL, Jan 31, 2024, 6:28 AM

Functional xf(x+f(y))=(y-x)f(f(x)) for all reals x,y

by cretanman, May 10, 2023, 3:50 PM

Find all functions $f\colon \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x,y \in \mathbb{R}$,
\[xf(x+f(y))=(y-x)f(f(x)).\]
Proposed by Nikola Velov, Macedonia
This post has been edited 4 times. Last edited by Amir Hossein, May 13, 2023, 1:00 AM
Reason: Fixed source

Concurrent lines

by syk0526, May 17, 2014, 9:41 AM

The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $ BC, CA, AB$ at $ A_1 , B_1 , C_1 $ respectively. The line $AI$ meets the circumcircle of $ABC$ at $A_2 $. The line $B_1 C_1 $ meets the line $BC$ at $A_3 $ and the line $A_2 A_3 $ meets the circumcircle of $ABC$ at $A_4 (\ne A_2 ) $. Define $B_4 , C_4 $ similarly. Prove that the lines $ AA_4 , BB_4 , CC_4 $ are concurrent.

Equal angles (a very old problem)

by April, Jul 13, 2008, 1:45 AM

The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD = \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP = \angle DAQ$.

Author: Vyacheslav Yasinskiy, Ukraine

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 22391
  • Total comments: 32
Search Blog
a