respectively. Lines
respectively. Prove that line


is tangent to the circumcircle of

So, I'll just prove that

Since

is a cyclic quadrilateral

is a cyclic quadrilateral, too.
Let

and

It's obvious that

is a parallelogram. Thus,

and

By sines' law, we obtain
![\[\frac{D_1M}{\sin \alpha}=\frac{MY}{\sin(\angle YD_1M)} \quad(\triangle D_1YM)\]](//latex.artofproblemsolving.com/1/4/f/14f57af1bf709f602b9f0518ae27376a68904dce.png)
and
![\[\frac{C_1M}{\sin (\beta+\theta)}=\frac{MY}{\sin(\angle YC_1M)} \quad(\triangle C_1YM).\]](//latex.artofproblemsolving.com/f/d/a/fda5fb593be00c1a00e7860644c94185c6d49b50.png)
Observe that

and

From the cyclic quadrilateral

we can obtain

and because

is a parallelogram, it's obvious that

so
Therefore, the above trigonometric proportions imply
On the other hand,
![\[\frac{D_1X}{\sin(\alpha+\theta)}=\frac{YX}{\sin(\angle XD_1Y)} \quad (\triangle D_1XY)\]](//latex.artofproblemsolving.com/7/2/1/721d6e83a4580bcda9f29b40be8723a2d2a9a36b.png)
and
![\[\frac{C_1X}{\sin \beta}=\frac{YX}{\sin(\angle XC_1Y)}\quad (\triangle C_1XY).\]](//latex.artofproblemsolving.com/a/8/e/a8ef2863d9d9100a173127977068e54944f72fa0.png)
Here notice that
Since

and

and

in the cyclic quadrilateral

we are done.
So,
![\[\frac{C_1X}{D_1X}=\frac{\sin \beta}{\sin(\alpha+\theta)}. \quad \quad \color{red}{(3)}\]](//latex.artofproblemsolving.com/f/3/1/f31921a57545d4774bda6ccc2b0d8d23b99fdfaf.png)
We've mentioned before that

and

since

is a parallelogram. Then, combining

and

we see that
![\[\frac{\sin \alpha}{\sin (\beta+\theta)}=\frac{\sin \beta}{\sin(\alpha+\theta)}. \quad \quad \color{red}{(4)} \]](//latex.artofproblemsolving.com/e/b/0/eb00d1ad76e23a1e2ee7275709c4f2310fce8cad.png)
Let's use the sines' law again:
![\[\frac{AE}{\sin \alpha}=\frac{AY}{\sin(\angle AEY)} \quad (\triangle AEY) \quad \text{and} \quad \frac{C_1E}{\sin (\beta+\theta)}=\frac{C_1Y}{\sin(\angle C_1EY)} \quad (\triangle C_1EY)\]](//latex.artofproblemsolving.com/d/2/3/d239bdb12b3c908bbcc2ebe39b2161104f9fdf4b.png)
![\[\frac{AE}{\sin \alpha} \cdot \frac{\sin (\beta+\theta)}{C_1E}=\frac{AY}{C_1Y}. \quad \text{(remember that} \ \angle AEY+\angle C_1EY=180^\circ ) \quad \quad \color{red}{(5)}\]](//latex.artofproblemsolving.com/0/1/f/01f00301be40afa7f61eb6d148fc0cf13ed49b0a.png)
Similarly, we can conclude that
![\[\frac{BX}{\sin \beta} \cdot \frac{\sin (\alpha+\theta)}{D_1X}=\frac{BY}{D_1Y}. \quad \quad \color{red}{(6)}\]](//latex.artofproblemsolving.com/9/d/a/9da95468f977859f4d55e5c4147c7a74fc4c0496.png)
Comparing

and

we get
![\[\frac{AE}{BX} \cdot \frac{\sin (\beta+\theta)}{\sin \alpha}\cdot \frac{\sin \beta}{\sin(\alpha+\theta)} \cdot \frac{D_1X}{C_1E}=\frac{AY}{BY}\cdot \frac{D_1Y}{C_1Y}. \quad \quad \color{red}{(7)}\]](//latex.artofproblemsolving.com/3/a/6/3a65153873094076f5ff6e5b6788595d30772a7f.png)
But, after using

and
,

will reduce to
![\[\frac{AE}{C_1E}=\frac{BX}{D_1X}.\]](//latex.artofproblemsolving.com/d/1/d/d1d202eec09f071e948fe444baebae007afa1d81.png)
Now, consider the following process:
![\[\frac{AE}{C_1E}=\frac{BX}{D_1X}\]](//latex.artofproblemsolving.com/3/0/6/3064e1387be1389f769843c023ce03b45a5e71ea.png)
![\[\frac{AE+C_1E}{C_1E}=\frac{BX+D_1X}{D_1X}\]](//latex.artofproblemsolving.com/d/f/e/dfef6bb272c7c53e3c6cb6426c503a4a2a3dfcc6.png)
![\[\frac{AC_1}{C_1E}=\frac{BD_1}{D_1X}\]](//latex.artofproblemsolving.com/3/d/7/3d73e53bbec3e93de54f6c618ed18450a3479dd0.png)
![\[\frac{AC_1}{BD_1}=\frac{C_1E}{D_1X}\]](//latex.artofproblemsolving.com/3/1/d/31d8d0ae0c08b63cddec8ff306c5c73ac7a89184.png)
![\[\frac{C_1Y}{D_1Y}=\frac{C_1E}{D_1X} \quad \left(ABC_1D_1 \text{is cyclic} \Longrightarrow \triangle AC_1Y \sim \triangle BD_1Y \Longrightarrow \frac{AC_1}{BD_1}=\frac{C_1Y}{D_1Y}\right) .\]](//latex.artofproblemsolving.com/c/5/e/c5eef69d5e920283596e5e977e4c4132ebefe873.png)
Note that, since

we have

Combining this fact with

we get that

and the solution is completed.
