Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Integral ratio of divisors to divisors 1 mod 3 of 10n
cjquines0   18
N 5 minutes ago by sansgankrsngupta
Source: 2016 IMO Shortlist N2
Let $\tau(n)$ be the number of positive divisors of $n$. Let $\tau_1(n)$ be the number of positive divisors of $n$ which have remainders $1$ when divided by $3$. Find all positive integral values of the fraction $\frac{\tau(10n)}{\tau_1(10n)}$.
18 replies
cjquines0
Jul 19, 2017
sansgankrsngupta
5 minutes ago
CSMGO P3: A problem on the infamous line XH
amar_04   12
N 20 minutes ago by WLOGQED1729
Source: https://artofproblemsolving.com/community/c594864h2372843p19407517
Let $\triangle ABC$ be a scalene triangle with the orthocenter $H$. Let $B'$ be the reflection of $B$ over $AC$ and $C'$ be the reflection of $C$ over $AB$. Let the tangents to the circumcircle of $\triangle ABC$ at points $B$ and $C$ meet at a point $X$. Suppose that the lines $B'C'$ and $BC$ meet at a point $T$. Prove that $AT$ is perpendicular to $XH$.
12 replies
amar_04
Feb 16, 2021
WLOGQED1729
20 minutes ago
Hard Function
johnlp1234   11
N 21 minutes ago by GreekIdiot
f:R+--->R+:
f(x^3+f(y))=y+(f(x))^3
11 replies
johnlp1234
Jul 7, 2020
GreekIdiot
21 minutes ago
Three mutually tangent circles
math154   8
N 22 minutes ago by lakshya2009
Source: ELMO Shortlist 2011, G2
Let $\omega,\omega_1,\omega_2$ be three mutually tangent circles such that $\omega_1,\omega_2$ are externally tangent at $P$, $\omega_1,\omega$ are internally tangent at $A$, and $\omega,\omega_2$ are internally tangent at $B$. Let $O,O_1,O_2$ be the centers of $\omega,\omega_1,\omega_2$, respectively. Given that $X$ is the foot of the perpendicular from $P$ to $AB$, prove that $\angle{O_1XP}=\angle{O_2XP}$.

David Yang.
8 replies
math154
Jul 3, 2012
lakshya2009
22 minutes ago
Line AT passes through either S_1 or S_2
v_Enhance   89
N 33 minutes ago by zuat.e
Source: USA December TST for 57th IMO 2016, Problem 2
Let $ABC$ be a scalene triangle with circumcircle $\Omega$, and suppose the incircle of $ABC$ touches $BC$ at $D$. The angle bisector of $\angle A$ meets $BC$ and $\Omega$ at $E$ and $F$. The circumcircle of $\triangle DEF$ intersects the $A$-excircle at $S_1$, $S_2$, and $\Omega$ at $T \neq F$. Prove that line $AT$ passes through either $S_1$ or $S_2$.

Proposed by Evan Chen
89 replies
v_Enhance
Dec 21, 2015
zuat.e
33 minutes ago
c^a + a = 2^b
Havu   3
N 34 minutes ago by Havu
Find $a, b, c\in\mathbb{Z}^+$ such that $a,b,c$ coprime, $a + b = 2c$ and $c^a + a = 2^b$.
3 replies
Havu
May 10, 2025
Havu
34 minutes ago
Easy geo
kooooo   3
N an hour ago by Blackbeam999
Source: own
In triangle $ABC$, let $O$ and $H$ be the circumcenter and orthocenter, respectively. Let $M$ and $N$ be the midpoints of $AC$ and $AB$, respectively, and let $D$ and $E$ be the feet of the perpendiculars from $B$ and $C$ to the opposite sides, respectively. Show that if $X$ is the intersection of $MN$ and $DE$, then $AX$ is perpendicular to $OH$.
3 replies
kooooo
Jul 31, 2024
Blackbeam999
an hour ago
Interesting
imnotgoodatmathsorry   0
an hour ago
Source: Own.
Problem 1. Let $x,y,z >0$. Prove that:
$\frac{108(x^6+y^6)(y^6+z^6)(z^6+x^6)}{x^9y^9z^9} - (xy+yz+zx)^6 \le 135$
Problem 2. Let $a,b,c >0$. Prove that:
$(a+b+c)^4(ab+bc+ca) - 9\sum{\frac{a}{c}} \ge 54[(a+b)(b+c)(c+a)+abc-1]$
0 replies
imnotgoodatmathsorry
an hour ago
0 replies
$n^{22}-1$ and $n^{40}-1$
v_Enhance   5
N an hour ago by Kempu33334
Source: OTIS Mock AIME 2024 #13
Let $S$ denote the sum of all integers $n$ such that $1 \leq n \leq 2024$ and exactly one of $n^{22}-1$ and $n^{40}-1$ is divisible by $2024$. Compute the remainder when $S$ is divided by $1000$.

Raymond Zhu

5 replies
v_Enhance
Jan 16, 2024
Kempu33334
an hour ago
Annoying 2^x-5 = 11^y
Valentin Vornicu   38
N an hour ago by Kempu33334
Find all positive integer solutions to $2^x - 5 = 11^y$.

Comment (some ideas)
38 replies
Valentin Vornicu
Jan 14, 2006
Kempu33334
an hour ago
Polish MO Finals 2014, Problem 5
j___d   14
N an hour ago by Kempu33334
Source: Polish MO Finals 2014
Find all pairs $(x,y)$ of positive integers that satisfy
$$2^x+17=y^4$$.
14 replies
j___d
Jul 27, 2016
Kempu33334
an hour ago
IMO LongList 1985 CYP2 - System of Simultaneous Equations
Amir Hossein   15
N an hour ago by Kempu33334
Solve the system of simultaneous equations
\[\sqrt x - \frac 1y - 2w + 3z = 1,\]\[x + \frac{1}{y^2} - 4w^2 - 9z^2 = 3,\]\[x \sqrt x - \frac{1}{y^3} - 8w^3 + 27z^3 = -5,\]\[x^2 + \frac{1}{y^4} - 16w^4 - 81z^4 = 15.\]
15 replies
Amir Hossein
Sep 10, 2010
Kempu33334
an hour ago
Prove that the triangle is isosceles.
TUAN2k8   6
N an hour ago by on_gale
Source: My book
Given acute triangle $ABC$ with two altitudes $CF$ and $BE$.Let $D$ be the point on the line $CF$ such that $DB \perp BC$.The lines $AD$ and $EF$ intersect at point $X$, and $Y$ is the point on segment $BX$ such that $CY \perp BY$.Suppose that $CF$ bisects $BE$.Prove that triangle $ACY$ is isosceles.
6 replies
TUAN2k8
Yesterday at 9:55 AM
on_gale
an hour ago
Radical Condition Implies Isosceles
peace09   10
N an hour ago by Kempu33334
Source: Black MOP 2012
Prove that any triangle with
\[\sqrt{a+h_B}+\sqrt{b+h_C}+\sqrt{c+h_A}=\sqrt{a+h_C}+\sqrt{b+h_A}+\sqrt{c+h_B}\]is isosceles.
10 replies
peace09
Aug 10, 2023
Kempu33334
an hour ago
Another NT FE
nukelauncher   62
N May 11, 2025 by Markas
Source: ISL 2019 N4
Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.
62 replies
nukelauncher
Sep 22, 2020
Markas
May 11, 2025
Another NT FE
G H J
Source: ISL 2019 N4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nukelauncher
354 posts
#1 • 9 Y
Y by TheLiker, itslumi, Kanep, centslordm, megarnie, ImSh95, TheHU-1729, deplasmanyollari, radian_51
Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nukelauncher
354 posts
#2 • 4 Y
Y by Mathematicsislovely, centslordm, ImSh95, radian_51
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anyone__42
92 posts
#3 • 12 Y
Y by idkwhatthisis, Kanep, Aryan-23, centslordm, TheMath_boy, uvuvwevwevwe, megarnie, sabkx, Vladimir_Djurica, ImSh95, TensorGuy666, radian_51
can be done easily using dirichlet's theorem
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dangerousliri
932 posts
#4 • 5 Y
Y by A-Thought-Of-God, centslordm, sabkx, ImSh95, radian_51
Here it is a solution that I did find when I did get the shortlist. Somehow for me it took me faster to solve this then N1 which was on the test. Also it should be $a+b>C$ and not $a+b>2019.$

Since $gcd(f(1),1)=1$ from Dirichlet's theorem we have there exist infinitely prime numbers of the form $1+nf(1)$. Taking all such $n>C$ then for $a=1$ and $b=n$ we have,
$$1+f(n)|1+nf(1)\Rightarrow f(n)=nf(1).$$
Now taking $a$ fixed and $b=n>C$ large enough we have,
$$a+nf(1)|a+f(n)|a^2+nf(a)|f(1)a^2+f(1)nf(a)\Rightarrow a+nf(1)|f(1)a^2+f(1)nf(a)-(a+nf(1))f(a)$$$$\Rightarrow a+nf(1)|a(f(1)a-f(a))\Rightarrow f(a)=f(1)a=ka.$$
Hence $f(a)=ka$ for all positive integers $a$, and clearly for any positive integer $k$ hold.
This post has been edited 1 time. Last edited by dangerousliri, Sep 23, 2020, 12:10 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
blacksheep2003
1081 posts
#5 • 4 Y
Y by centslordm, sabkx, ImSh95, radian_51
Solution

Oh wow, I thought my solution was pretty unique to use Dirichlet's Theorem, but it seems other people had the same idea lol oops :P
This post has been edited 4 times. Last edited by blacksheep2003, Sep 23, 2020, 12:49 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MarkBcc168
1595 posts
#6 • 14 Y
Y by mijail, Imayormaynotknowcalculus, k12byda5h, A-Thought-Of-God, Aryan-23, Kanep, centslordm, tigerzhang, GeoKing, ImSh95, Stuffybear, iamnotgentle, radian_51, Om245
Comment: Extremely standard NT functional divisibility. This trick used to solve this problem have been appeared many many times.

As in every functional divisibility problems, the main point is to prove that $f$ is linear on some infinite set. We prove the following claim.

Claim: There exists infinite sequence $C<x_1<x_2<\hdots$ such that $f(x_i)=kx_i$ for some constant $k$.

Proof: The idea is to force the right hand side to be prime. By Dirichlet, there exists infinitely many $x>C$ which $1+xf(1)=p$ is prime. However,
$$1+f(x)\mid xf(1)+1\implies f(x)+1\in\{1,p\}\implies f(x)=xf(1)$$for infinitely many $x$. Hence we are done. $\blacksquare$

Once we have this we are almost done. Fix $n\in\mathbb{Z}^+$. Since
\begin{align*}
&n+kx_i\mid n^2+x_if(n) \\ 
\implies &n+kx_i\mid k(n^2+x_if(n)) - f(n)(n+kx_i) \\
\implies &n+kx_i\mid kn^2-nf(n)
\end{align*}and $x_i$ is arbitrarily large. We get $f(n)=kn$ for any $n$.
This post has been edited 1 time. Last edited by MarkBcc168, Sep 23, 2020, 1:43 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
FAA2533
65 posts
#7 • 3 Y
Y by Aryan-23, centslordm, ImSh95
nukelauncher wrote:
Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.
It somehow seemed very easy to me than N1.

Solution
This post has been edited 6 times. Last edited by FAA2533, Jul 18, 2022, 2:35 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ubermensch
820 posts
#9 • 5 Y
Y by ATGY, Illuzion, centslordm, ImSh95, radian_51
Let $P(a,b)$ denote the assertion that $a+f(b) \mid a^2+bf(a)$.

Naturally, a $P(1,b)$ substitution gives us $1+f(b) \mid 1+bf(1) \implies bf(1) \geq f(b)$. We'll now denote $f(1)$ by $k$, as we shall be using it quite extensively.

$P(a,1): a+k \mid a^2+f(a) \implies a+k \mid a^2+f(a)-a(a+k) \implies a+k \mid f(a)-ak \implies a+k \mid f(a)-ak +k(a+k)$.

Hence we get $a+k \mid f(a)+k^2$. Coupled with our first bound, this gives us that $f(a)=at+tk-k^2$ for large enough $a$.

Here, although it is quite instinctual to substitute $a$ as a prime, we can in fact avoid that altogether and deal just with our regular naturals- although it will get quite ugly, but at the very least it will remain very mechanical.

Our aim, as it always is in such problems, is to manipulate the divisibility so as to be able to make the left hand side arbitrarily large without altering the expression on the right, hence forcing the right hand side to be become zero. A simple $(a,b)$ substitution in the original expression with a little modification would give us what we're looking for.

Firstly-
$$a+f(b) \mid a^2+bf(a) \implies a+f(b) \mid a^2+bf(a)-a(a+f(b))$$$$\implies a+f(b) \mid bf(a)-af(b) +f(b)(a+f(b)) \implies a+f(b) \mid bf(a)+f(b)^2$$
Thus we have $a+f(b) \mid f(b)^2 + bf(a)$. We now substitute $f(a)=at+(k^2-kt)$ to get-

$$a+f(b) \mid b(at+k^2-kt)+f(b)^2$$$$\implies a+f(b) \mid abt+bk^2-bkt+f(b)^2-bt(a+f(b)) \implies a+f(b) \mid b(k^2-kt)+f(b)^2-btf(b)$$Observe now that we can make our $a$ arbitrarily large for a constant $b$, and noting that $k=f(1)$ has a fixed value along with $t \leq k$ forces $f(b)^2-btf(b)+b(k^2-kt)=0$, as planned.

Writing $f(b)=rb+rk-k^2$ gives us $(rb+rk-k^2)^2-bt(rb+rk-k^2)+b(k^2-kt)=0$. For large $b$, since our $k$ and $t$ are small (compared to our now large $b$), we can simply equate the coefficients of $b^2$ and $b$ and the constant term zero individually. Hence, $r^2-rt=0 \implies r=t$ and equating the constant term to zero gives us $r=k$.

Thus, for arbitrarily large $n$, we have $f(n)=kn$. The finish is now quite simple-
$$P(n,b): n+f(b) \mid n^2+knb-n(n+f(b))-(kb-f(b))(n+f(b))$$$$\implies n+f(b) \mid (kb-f(b))f(b)$$for large $n$, hence forcing $f(b)=kb$ for all $b$.

Clearly $f(n)=kn$ satisfies the original condition, and hence we're done.

Quite a standard one, and rather mechanical, especially if you've done something like this before (POP). Nevertheless, quite an instructive exercise on functional divisibilities...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dchenmathcounts
2443 posts
#10 • 4 Y
Y by centslordm, Marie36, ImSh95, radian_51
guess this has been said before, but here goes

We claim the answer is $f(x)=kx$ for $k\in \mathbb{Z}_{>0}.$

Fix $a=1.$ Note that $1+bf(1)$ is a prime infinitely often by Dirichlet (is this how you spell it?). So let $b$ be some absurdly large number such that $a+b>2019$ and $1+bf(1)$ is prime; then $1+f(b)\mid 1+bf(1).$ Since $1+bf(1)$ is prime we either have $1+f(b)=1$ or $1+f(b)=1+bf(1).$ Clearly the latter holds, so there are infinitely many $b$ such that $f(b)=bf(1).$

Now take some mega ultra large $b$ such that $f(b)=bf(1),$ and note that $a+f(b)=a+bf(1)\mid a^2+bf(a)$ and $a+bf(1)\mid a^2+abf(1).$ Subtracting the latter from the former gives $a+bf(1)\mid b(f(a)-af(1)).$ Note that $\gcd(a+bf(1),b)=\gcd(a,b),$ so if $a$ is prime this implies that $a+bf(1)\mid f(a)-af(1).$ Since $b$ is, as I quote, "ultra mega large," $|a+bf(1)|>|f(a)-af(1)|,$ so for all prime $a$ we have $f(a)=af(1).$

Now take some ultra mega large prime $b,$ which we have just shown exists, and note that
\[a+bf(1)\mid b(f(a)-af(1)), \text{ which implies that}\]\[a+bf(1)\mid f(a)-af(1),\]and since $b$ is ultra mega large, we have shown that $f(a)=af(1)$ in general.
This post has been edited 1 time. Last edited by dchenmathcounts, Sep 23, 2020, 5:14 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ayan_mathematics_king
1527 posts
#11 • 7 Y
Y by 508669, Mathematicsislovely, amar_04, A-Thought-Of-God, centslordm, ImSh95, radian_51
Solution by my friend RustyFox who is banned now.So I am posting his solution.
nukelauncher wrote:
Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>C$.

Solution : Let $P(x, y)$ be the assertion. $P(1, k) \implies kf(1)\geq f(k)$.

This is going to be useful. Let $p \mid x$ where $p$ is a prime.

Let $k = Cf(x)$

$P(kp-f(x), x \implies kp \mid (kp-f(x))^2 + f(kp-f(x))x$ which means that $p \mid f(x)$. So, $p \mid f(p)$ for all primes $p$.

Let us say that $f(p)= g(p)p$ for primes $p$. Observe that $0 < g(p) \leq f(1)$. If $g(p)\neq g(q)$ for two distinct primes $p, q$ which are much much greater than $C$ (say it's much greater than $(C+2019f(1))!\uparrow \uparrow (C+2019f(1))!)$, then $P(p, q) \implies p + qg(q) \mid p^2 + pqg(p)$ or in other words $p + qg(q) \mid pq(g(p)-g(q))$. Now since $gcd(p, q) = gcd(p, g(q)) = gcd(p, qg(q)) = 1$, we havs $p + qg(q) \nmid pq$. Now, $p + qg(q) \mid g(p)-g(q)$ but the dividend is less than $f(1)$ and due to our value of $p, q$, $p + qg(q) >> f(1)$ which means that for all sufficiently large primes we have $g(p) = g(q) = c$. Now for any prime $p$ such that $f(p) = pc$ and any other prime $q$ for which we aren't sure if $f(q)$ equals $qc$ or not and obviously here $q < p$,we take $P(q, p)$ to get that $q + pc \mid p(f(q)-qc)$ and since $pc  + q > pc \geq p$, we havs $q + pc \mid f(q)-qc$ and so see that $f(q) - qc \leq qf(1)-qc = q(f(1)-c)$ and so choosing $p > q(f(1)-c)$ would suffice and so for all primes $p$, we have $f(p)=pc$. Now, let $p >>a$. Then $P(a, p) \implies a + pc \mid pf(a)-pca$ but $gcd(p, a)=1$ and so $a+pc \mid f(a)-ac$. Choosing large enough $p$ yields that $\boxed{f(a)=ac}$ for all naturals $a$
This post has been edited 3 times. Last edited by ayan_mathematics_king, Sep 24, 2020, 7:51 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ProblemSolver2048
104 posts
#15 • 3 Y
Y by centslordm, ImSh95, radian_51
Since gcd(f(1,),1)=1 from Dirichlet's theorem we have there infinitely prime numbers of the form 1+nf(1). Taking all such n>C then for all a=1 and b=n we have $$1+f(n)|1+nf(1)\Rightarrow f(n)=nf(1).$$Now taking a fixed and b=n> C large enough we have,
$$a+nf(1)|a+f(n)|a^2+nf(a)|f(1)a^2+f(1)nf(a)\Rightarrow a+nf(1)|f(1)a^2+f(1)nf(a)-(a+nf(1))f(a)$$$$\Rightarrow a+nf(1)|a(f(1)a-f(a))\Rightarrow f(a)=f(1)a=ka.$$hence f(a)=ka for all positibe integers , clearly for any positive integer k hold.
Acknowledgements to dangerousliri's in post 4. I didn't make it.
This post has been edited 1 time. Last edited by ProblemSolver2048, Dec 14, 2020, 7:39 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathematicsislovely
245 posts
#16 • 5 Y
Y by amar_04, centslordm, ImSh95, sabkx, ylmath123
Let $P(a,b)$ denote the assertion of the question.

Claim:For all prime $p$ we have $p|f(p)$.
proof.Fix a prime $p$.$k$ be an integer such that $(k+1)p-f(p)>2020^{2020}$.Then $P(kp-f(p),p)\implies p|kp-f(p)+f(p)|(kp-f(p))^2+pf(stuff)\implies p|f(p)$. $\blacksquare$.

Then $f(p_n)=c_np_n$ where $p_n$ is the $n^{th}$ prime.But as $P(1,b)\implies f(b)\le f(1)b$ $\forall 
 b\ge 2020$. So $c_n$ is bounded sequence.Hence,there exists an integer $r$ such that it is equal to infinitely many $c_i$.So there exists an increasing sequence $(q_n)_{n=1}^{\infty}$ of prime integers such that $f(q_s)=rq_s$ $\forall s\in \mathbb N$.

Now, for a fix $a$ take a big $q_i$ such that $gcd(a,q_i)=1$.Then,
$P(a,q_i)\implies\\
 a+rq_i|a^2+q_if(a)\\
\implies a+rq_i|a^2+q_if(a)-a^2-arq_i\\
\implies a+rq_i|q_i(f(a)-ar)\\
\implies a+rq_i|(f(a)-ar)$.
Now for sufficiently large $q_i$ we get $f(a)=ar$.Hence,$\boxed{f(x)=rx}$ is the only solution which indeed satisfies the functional equation. $\blacksquare$.
This post has been edited 4 times. Last edited by Mathematicsislovely, Sep 26, 2020, 11:00 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilove_mathematics
188 posts
#17 • 3 Y
Y by centslordm, odkaI, ImSh95
Let $P(a,b)$ denote the divisibility $(a+f(b)) \mid (a^2+bf(a)).  ($For simplicity say $C = 2019)$

Let $n$ denote $f(1).$ We are going to show that $f(k) = kn,$ for all $k \in \mathbb{Z}_{>0}.$ Let $\mathbb{A} = \{C+1, C+2, ...\}.$

Lemma 1: Define $g:\mathbb{A} \rightarrow \mathbb{Q}$ as $g(a) = \frac{an-f(a)}{a+n},$ then $g$ is limited.

Proof: Let $a$ be a positive integer greater than $C.$ Then $P(a,1)$ gives $a+n \mid a^2 + f(a) \implies (a+n).q = a^2 + f(a)$ with $q \in \mathbb{N}.$ On the other hand $P(1, a) \implies 1+f(a) \mid 1+an \implies f(a) \leq an,$ therefore $(a+n).a =$ $a^2 + an \geq a^2 + f(a), $ suppose for the sake of contradiction that $f(a) < an \implies q < a \implies q = a-k$ so $(a+n)(a-k) = a^2 + f(a) > a^2,$ since $(a+n)(a-n)  < a^2$ we have $k < n \implies k$ is bounded as $a$ varies along the natural numbers greater than $C,$ yielding $k = \frac{an-f(a)}{a+n} = g(a)$ is limited.$\blacksquare$

Lemma 2: There are infinitely many positive integers $s$ such that $f(s) = sn.$

Proof: Let $S = \{a_1, a_2, ...\}$ be the set of positive integers such that $\frac{a_in-f(a_i)}{a_i+n} = t$ a constant, with $C < a_1 < a_2 < ...,$ there exists such $t,$ because the set $\mathbb{A}$ is unbounded. So $\frac{a_in-f(a_i)}{a_i+n} = t \implies$ $f(a_i) = a_in-t(a_i+n),$ for all $i.$
Now fix $j$ such that $a_j(n-t+1) \ne nt.$ Plugging $a = a_i, b = a_j$ gives: $$(a_i + f(a_j)) \mid (a_i^2 + a_jf(a_i)) \implies$$$$(a_i + a_jn - t(a_j+n)) \mid [(a_i^2 + a_ja_in - a_jt(a_i+n)) - a_i(a_i+a_jn-t(a_j+n))] \implies$$$$(a_i+a_jn-t(a_j+n)) \mid (a_i-a_j)nt.$$Let $d_i$ be $gcd(a_i + a_jn-t(a_j+n), a_i - a_j),$ (of course $i \ne j$) if $d_i > max(a_j(n-t+1), nt) \implies$ $a_i + a_jn-t(a_j+n) \equiv a_j + a_j(n-t) - nt \pmod {d_i} \implies d_i \mid a_j(n-t+1)-nt,$ as supposed we must have $a_j(n-t+1) = nt,$ contradiction. Therefore $d_i$ is bounded. Observe $(a_i + a_jn-t(a_j+n))|d_int,$ $\forall i \in \mathbb{N}, i \ne j,$ setting $i \rightarrow \infty \implies a_i \rightarrow \infty$ thus, we eventually have: $a_i + a_jn -t(a_j+n) > d_int \implies d_int = 0 \implies t = 0 \implies f(a_i) = a_in,$ for all $i,$ sufficiently large. $\blacksquare$


Fix $k$ a positive integer.
Plug $a = k, b = a_i \implies k+a_in \mid k^2 + a_if(k) \implies (k+a_in) \mid (k^2+a_if(k) - k(k+a_in)),$ yielding $(k+a_in) \mid a_i(f(k)-kn)$ so $(k+a_in).q_i = a_i.|f(k)-kn|, q_i \in \mathbb{Z}_{\geq 0} \implies q_i = \frac{a_i.|f(k)-kn|}{k+a_in}$ call $t = |f(k)-kn|$ a constant. If $q_i > t \implies (k+a_in).t < a_i.t$ contradiction. We conclude $q_i$ is bounded. On the other hand if $i \ne j$ and $q_i = q_j \implies \frac{a_it}{k+a_in} = \frac{a_jt}{k+a_jn}$ $\implies a_itk + a_ia_jnt = a_jtk + a_ja_int \implies (a_i-a_j)kt = 0$ then $t$ would be $0.$ Since $q_i, q_j$ are bounded, both positive and we can choose $i, j \in \mathbb{N}$ such that $q_i = q_j, f(k)-kn = 0$ for all $k \in \mathbb{N},$ as $(a+kb).a = a^2 + akb \implies f(a) = an$ for all positive integers $n.$
This post has been edited 1 time. Last edited by Ilove_mathematics, Sep 27, 2020, 4:22 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
solver1104
510 posts
#18 • 3 Y
Y by centslordm, ImSh95, radian_51
Remark: Standard problem, seems pretty easy in difficulty unless I messed up. Also, I cite the so called Weak - Dirichlet theorem many times over this proof. Although no proof of Dirichlet Theorem that I know of is elementary, Weak Dirichlet can easily be proven by cyclotomic polynomials - see Evan Chen's Orders handout for more details.

random stuff

We claim that the answer is all functions $f(x) \equiv cx$ for any positive integer $c$. It's easy to see that all such functions work, because $a + bc | a^2 + abc = a(a+bc)$. Now we show that these are the only functions that work.

Consider the more general problem, replacing $2019$ with any constant $C$. Denote the given assertion$P(a,b)$.

Now we claim that $f(b) = bf(1)$ holds for infinitely many $b$. Indeed, $P(1,b)$ gives $1 + f(b) | 1 + bf(1)$, and now by Weak Dirichlet, there exists infinitely many $b$ such that $bf(1) + 1$ is prime, and since $1 + f(b) > 1$, we have $f(b) = bf(1)$, as desired.

Now we show that this actually implies $f(a) = af(1)$ for all $a$. Indeed, by Weak Dirichlet again, there exists infinitely many primes that are $1 \pmod{f(a) \cdot f(1)}$ for any $a$. Now take a prime of this form, $p$, and let $p$ be arbitrarily large. Note that $p$ is relatively prime to $f(a)$, and it is also of the form $cf(1) + 1$ for some $c$, hence by the first claim, $f(p) = pf(1)$. Then $P(p,a)$ gives $p + f(a) | p^2 + apf(1)$. Now $\gcd(p, p+f(a)) = \gcd(p,f(a)) = 1$ by the assumption that $p$ is $1 \pmod{f(a)}$, so the extra factor of $p$ on the $RHS$ can be taken out. Now we have $p + f(a) | p + af(1)$ for all $a$, and since $p$ is arbitrarily large, so that $p >>> f(a), af(1)$, so the two sides are actually equal, and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rcorreaa
238 posts
#19 • 3 Y
Y by centslordm, ImSh95, radian_51
Pretty standard NT FE problem... :maybe:

From the problem, $1+f(n)|1+nf(1)$ for all $n \in \mathbb{N}$. From Dirichlet's Theorem, since $gcd(1,f(1))=1$, there are infinetly prime numbers in the AP $\{1+nf(1)\}_{n \geq 1}$.

Thus, since $1+f(n)>1, 1+f(n)=1+nf(1)$ when $1+nf(1)$ is prime $\implies f(n)=nf(1)$ in this case.

Hence, there exists a sequence $\{a_n\}_{n=1}^{\infty}$ such that $f(a_n)=a_nf(1)$ for all $n \in \mathbb{N}$. Then, from the problem,
$$a+a_nf(1)|a^2+a_nf(a) \implies a+a_nf(1)|a^2f(1)+a_nf(a)f(1),af(a)+f(a)f(1)a_n$$$$\implies a+a_nf(1)|a^2f(1)-af(a)$$for all $n \in \mathbb{N}$

Taking $n$ large enough, $a^2f(1)-af(a)$ must be $0$.

Therefore, $f(a)=af(1)$ for all $a \in \mathbb{N}$, which clearly works.

$\blacksquare$
Z K Y
G
H
=
a