Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
2-var inequality
sqing   4
N 2 minutes ago by Rohit-2006
Source: Own
Let $ a,b\geq 0 $ and $\frac{1}{a^2+3} + \frac{1}{b^2+3} -ab\leq  \frac{1}{2}.$ Prove that
$$  a^2+ab+b^2 \geq \frac{3(\sqrt{57}-7)}{4}$$Let $ a,b\geq 0 $ and $\frac{a}{b^2+3} + \frac{b}{a^2+3} +ab\leq  \frac{1}{2}.$ Prove that
$$  a^2+ab+b^2 \leq \frac{9}{4}$$Let $ a,b\geq 0 $ and $ \frac{a}{b^3+3}+\frac{b}{a^3+3}-ab\leq  \frac{1}{2}.$ Prove that
$$  a^2+ab+b^2 \geq \frac{9}{4}$$
4 replies
sqing
Yesterday at 12:55 PM
Rohit-2006
2 minutes ago
Easy Diff NT
xToiletG   3
N 4 minutes ago by elizhang101412
Prove that for every $n \geq 2$ there exists positive integers $x, y, z$ such that
$$\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$$
3 replies
xToiletG
Today at 7:35 AM
elizhang101412
4 minutes ago
Number Theory
Resolut1on07   1
N 5 minutes ago by Resolut1on07
Given a positive integer \( n \). Prove that always exists a positive integer \( k \) such that \( a^2 + b^2 + n \) is not divisible by \( k \), for all positive integers \( a \) and \( b \).
1 reply
Resolut1on07
Yesterday at 11:49 AM
Resolut1on07
5 minutes ago
A series of transfers
Fermat -Euler   12
N 16 minutes ago by kotmhn
Source: IMO Shortlist 1994, C3
Peter has three accounts in a bank, each with an integral number of dollars. He is only allowed to transfer money from one account to another so that the amount of money in the latter is doubled. Prove that Peter can always transfer all his money into two accounts. Can Peter always transfer all his money into one account?
12 replies
+1 w
Fermat -Euler
Oct 22, 2005
kotmhn
16 minutes ago
No more topics!
Incircle of a triangle is tangent to (ABC)
amar_04   11
N Apr 22, 2025 by Nari_Tom
Source: XVII Sharygin Correspondence Round P18
Let $ABC$ be a scalene triangle, $AM$ be the median through $A$, and $\omega$ be the incircle. Let $\omega$ touch $BC$ at point $T$ and segment $AT$ meet $\omega$ for the second time at point $S$. Let $\delta$ be the triangle formed by lines $AM$ and $BC$ and the tangent to $\omega$ at $S$. Prove that the incircle of triangle $\delta$ is tangent to the circumcircle of triangle $ABC$.
11 replies
amar_04
Mar 2, 2021
Nari_Tom
Apr 22, 2025
Incircle of a triangle is tangent to (ABC)
G H J
G H BBookmark kLocked kLocked NReply
Source: XVII Sharygin Correspondence Round P18
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
amar_04
1916 posts
#1 • 4 Y
Y by A-Thought-Of-God, Bumblebee60, LoloChen, Rounak_iitr
Let $ABC$ be a scalene triangle, $AM$ be the median through $A$, and $\omega$ be the incircle. Let $\omega$ touch $BC$ at point $T$ and segment $AT$ meet $\omega$ for the second time at point $S$. Let $\delta$ be the triangle formed by lines $AM$ and $BC$ and the tangent to $\omega$ at $S$. Prove that the incircle of triangle $\delta$ is tangent to the circumcircle of triangle $ABC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
amar_04
1916 posts
#3 • 8 Y
Y by Aritra12, Pluto04, Dr_Vex, A-Thought-Of-God, Mathematicsislovely, Bumblebee60, PRMOisTheHardestExam, SerdarBozdag
[asy]
defaultpen(fontsize(9pt));
size(9cm);

pair A,B,C,I,T,S,M,G,X,K,N,I1,D,E,F,I2,N2,I3,D1,E1,F1,P,O,G1,G2,G3,T1,D2;

A=dir(130);
B=dir(220);
C=dir(320);
I=incenter(A,B,C);
O=circumcenter(A,B,C);
T=foot(I,B,C);
S=-T+2*foot(I,A,T);
P=-A+2*foot(O,A,I);
G=(S+T)/2;
M=(B+C)/2;
X=extension(I,G,B,C);
K=extension(X,S,A,M);
N=circumcenter(B,I,C);
I1=-I+2N;
D=foot(I1,B,C);
E=foot(I1,A,C);
F=foot(I1,A,B);
I2=incenter(X,K,M);
N2=circumcenter(K,I2,M);
I3=-I2+2N2;
D1=foot(I3,A,M);
E1=foot(I3,X,K);
F1=foot(I3,B,C);
G1=-P+2*foot(O,P,F1);
G2=foot(I2,B,C);
G3=-P+2*foot(O,P,G2);
T1=-T+2I;
D2=-D+2I1;

draw(A--B--C--cycle);
draw(circumcircle(A,B,C));
draw(incircle(A,B,C));
draw(A--T);
draw(A--M);
draw(B--X--E1);
draw(incircle(X,K,M));
draw(B--F);
draw(C--E);
draw(circumcircle(D,E,F));
draw(I1--M);
draw(A--I1,linewidth(0.3));
draw(circumcircle(D1,E1,F1));
draw(G3--P--G1,linewidth(0.4));
draw(X--I3);
draw(T--T1,linewidth(0.4));
draw(A--D--D2--T,linewidth(0.3));

dot("$A$" , A , dir(A));
dot("$B$" , B , dir(B));
dot("$C$" , C , dir(30));
dot("$S$" , S , dir(S));
dot("$T$" , T , dir(T));
dot("$M$" , M , dir(M));
dot("$X$" , X , dir(X));
dot("$I$" , I , dir(270));
dot("$I_a$" , I1 , dir(I1));
dot("$P$" , P , dir(P));
dot("$O_1$" , I2 , dir(250));
dot("$O_2$" , I3 , dir(I3));
dot("$D$" , D , dir(D));
dot("$$" , T1 , dir(T1));
dot("$D'$" , D2 , dir(D2));

[/asy]

$\textbf{LEMMA:-}$ $ABC$ be a triangle with $I$ as the incenter and let $D$ be a point on $\overline{BC}$. Let $\omega_1$ be the circle tangent to $AD,BD$ and $\odot(ABC)$ internally and $\omega_2$ be the circle tangent to $AD,CD$ and $\odot(ABC)$ internally. Let $K$ be the midpoint of $ID$ and $P=\overline{AI}\cap\odot(ABC)$. Then $\overline{PK}$ is the radical axis of $\omega_1$ and $\omega_2$.

Let $\omega_1$ and $\omega_2$ with centers $I_1,I_2$ touch $\overline{BC}$ at $X,Y$ respectively and let $M$ be the midpoint of $XY$. Let $\omega_1$ and $\omega_2$ touch $\overline{AD}$ at $P,Q$ and $\odot(ABC)$ at $R,S$ respectively . It's well known that $\overline{XR}\cap\overline{YS}=P$ and $PX\cdot PR=PY\cdot PS$. (See $\textbf{Lemma 4.33}$ of EGMO). Hence, $P$ lies on the radaical axis of $\omega_1,\omega_2$. By Sawayama-Thebault Theorem we have that $I_1,I,I_2$ are collinear and $\overline{XP}\cap\overline{YQ}=I$. Let $V$ be the reflection of $D$ over $M$. Define $\psi(\cdot)=\mathcal{P}_{\omega_1}(\cdot)-\mathcal{P}_{\omega_2}(\cdot)$ where $\mathcal{P}_{\omega}(\cdot)$ denotes the power of $\cdot$ WRT some circle $\omega$. It's well known that $\psi$ is a linear function on $\cdot$, so it suffices to show that $\psi(K)=\frac{(\psi(I)+\psi(D))}{2}=0\implies \psi(I)+\psi(D)=0$. Now, $$\psi(D)+\psi(V)=(DX^2-DY^2)+(VX^2-VY^2)=(DX^2-DY^2)+(DY^2-DX^2)=0=\psi(I)+\psi(D)\implies \psi(I)=\psi(V)\implies II_1^2-II_2^2=VI_1^2-VI_2^2$$So it further suffices to show that $\overline{IV}\perp\overline{II_1I_2}$.Notice that $\measuredangle YXI=\measuredangle YDI_2$ and $\measuredangle XIY=\measuredangle I_2YD$. Hence, $\Delta XIY\stackrel{-}{\sim}\Delta DYI_2$. Now notice that $\measuredangle VXI=\measuredangle I_2YI$ and $\frac{XI}{XV}=\frac{XI}{DY}=\frac{YI}{YI_2}$. Hnce, $\Delta IXV\stackrel{+}{\sim} \Delta IYI_2$. Thus $\overline{IV}\perp\overline{II_1I_2}$. Backtracking our series of equivalenences we get that $\overline{PK}$ is the radical axis of $\omega_1,\omega_2$. $\quad\square$
__________________________________________________________________________________________

Let $\omega_1$ with center $O_1$ be the circle tangent to $AM,BM$ and internally tangent to $\odot(ABC)$ and $\omega_2$ with center $O_2$ be the circle tangent to $AM,CM$ and internally tangent to $\odot(ABC)$. Denote $I_a$ as the $A-$ Excenter of $\Delta ABC$ , $U$ as the midpoint of $IM$ and let the $A-$ Excircle touch $\overline{BC}$ at $D$. Let $D'$ be the reflection of $D$ over $I_a$. The Homothety $\mathcal{H}$ at $A$ mapping the Incircle of $\Delta ABC$ to the $A-$ Excircle maps $T$ to $D'$, hence ,$A,T,D'$ are collinear. Combining the fact that $MD=MT$ we get that $\overline{MI_a}\parallel\overline{AT}$. Combining with $\textbf{LEMMA}$ we have that $PU\parallel\overline{I_aM}\parallel\overline{AT}\perp\overline{O_1IO_2}$. Let $\overline{O_1IO_2}\cap\overline{BC}=X$. Hence, $\overline{XS}$ is tangent to $\odot(I)$ as $AT\perp\overline{O_1IO_2}$. Hence, $\{\omega_1,\odot(I),\omega_2\}$ share the common exsimillicenter $X$ with external common tangents $\overline{BC},\overline{XS}$, thus $\omega_1,\omega_2$ are the Incircle and the $X-$ Excircle of $\Delta\{\overline{XS},\overline{AM},\overline{BC}\}$. $\quad\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#4 • 6 Y
Y by amar_04, mijail, Pluto04, mathtiger6, hakN, PRMOisTheHardestExam
[asy]
import olympiad;
size(10cm);
defaultpen(fontsize(10pt));
defaultpen(linewidth(0.4));
dotfactor *= 1.5;

pair A = dir(135), B = dir(220), C = dir(320), I = incenter(A,B,C), T = foot(I,B,C), M = (B+C)/2, E = foot(I,C,A), F = foot(I,A,B), U = extension(E,F,B,C), S = 2*foot(T,U,I)-T, V = extension(A,M,U,S), J = incenter(M,V,U), K = foot(J,B,C), L = foot(J,A,M), T1 = 2I-T, T2 = 2M-T, G = foot(T,A,T1);

draw(A--B--C--A);
draw(incircle(A,B,C));
draw(M--U--V--M, linewidth(1));
draw(T--A--M);
draw(incircle(M,U,V)^^unitcircle, linewidth(0.75));
draw(K--L, dashed);
draw(T--T1--V);
draw(A--T2^^M--G);
draw((U+V)/2--(M+V)/2^^U--I);
dot((U+V)/2^^(M+V)/2^^L^^K);

dot("$A$", A, dir(135));
dot("$B$", B, dir(240));
dot("$C$", C, dir(320));
dot("$M$", M, dir(270));
dot("$T$", T, dir(270));
dot("$U$", U, dir(210));
dot("$V$", V, dir(80));
dot("$S$", S, dir(150));
dot("$I$", I, dir(135));
dot("$T_1$", T1, dir(80));
dot("$T_2$", T2, dir(270));
dot("$G$", G, dir(10));
[/asy]
Suppose that the tangent to $\omega$ at $S$ meets $\overline{BC}$ at $U$ and $\overline{AM}$ at $V$. By curvilinear incircle properties, the result is equivalent to proving the incenter $I$ lies on the $M$-intouch chord in $\triangle MUV$. Clearly $\overline{UI}$ bisects $\angle MUV$, so by Iran lemma it suffices to show $I$ lies on the $V$-midline.

Let $T_1$ be the reflection of $T$ over $I$, $T_2$ be the reflection of $T$ over $M$, and $G = \overline{T_1T_2} \cap \omega$. It is well-known that $A \in \overline{T_1T_2}$. Also $\overline{MG}$ is tangent to $\omega$ since $MG = MT = MT_2$ from $\angle TGT_2 = 90^\circ$. Now applying Pascal's on $TSSGT_1T_1$ and $TSGGT_1T$ implies $\overline{VT_1}$ tangent to $\omega$, and the desired result follows.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Dr_Vex
562 posts
#5 • 2 Y
Y by amar_04, Combigeontal231
$\underline{\textbf{Solution:}}$ Let $\delta ''$ be Thebault circle of $(ABC)$ associated with $AM$ touching $\frown{AB}$ not containing $C$ We will prove that $\delta '' \equiv \delta ', $ where $\delta '$ is the incircle of $\delta$. Now, we rephrase the problem:
Rephrased Problem wrote:
In $\Delta ABC$ with $\odot (I)$ as its incircle. Let $\odot (I) \cap BC = T, AT \cap \odot (I) = S \neq T $ and $SS \cap BC = X$. Let $\delta '''$ be thebault circle of $(ABC)$ associated with $AM' (M' \in BC)$ which touches minor arc $AB$ such that $X$ is the exsimilicenter of $\delta ''$ and $\odot (I),$ then prove that $M' \equiv M$
$\newline
\underline{\textbf{Proof:}}$ First we state a short lemma,
Lemma: In $\Delta ABC$, with $I$ as its incenter and $\Delta DEF$ as its intouch triangle. Let $AI \cap (DIEC) = I \neq I_{1}.$ Let $\odot (I_{1})$ touch $AB$ and $AC$ at $K$ and $L$. Then line $\ell \parallel AB$ through $C$ is tangent to $\odot (I_{1})$
$\newline
\underline{\textbf{Proof:}}$ Let $IF \cap \ell = R, \angle CRI = 90^{\circ}$ and $\angle CEI = 90^{\circ}$ which means $R \in (DEIC).$ A homothety $(\mathcal{T})$ exists that sends $I$ to $I_{1}$ centered at, $\mathcal{T}$ sends $F$ to $K$ and $FI \cap \odot(I) = P \leftrightarrow AP \cap KI_{1} = O$ (say). Also $\angle ORI = 90^{\circ}$ as $FI \parallel KI_{1} ,$ which means that $\overline{CRO} \equiv \ell.$ Hence, the conclusion follows because $\ell \parallel AB$ and $AB$ is tangent to $\odot (I_{1}).$
$\newline
\rule{\textwidth}{0.5pt}
\newline$
Let $SS \cap AM' = D.$ Let $T-$antipode $W.R.T$ $\odot (I)$ be $T'$. Then, $DT' \parallel BC$ and is tangent to $\odot (I)$ by above lemma. Let $AS \cap \ell = W.$
$\newline$
Claim: $D$ is midpoint of $WT'$
$\newline
\underline{\textbf{Proof:}}$ Note that $$\angle DWS = \angle WTX = \angle ST'T = 90^{\circ} - \angle STT' = 90^{\circ} - \angle DST' = 180^{\circ} - (90^{\circ} + \angle DST') = \angle DSW$$Which means that $DW = DS. DT'$ and $DS$ being tangent to same circle, $DS = DT'.$ Hence, $DW = DS = DT'.$
$\newline
\newline$
It is well-known that $AT'$ is the $A-$nagel line. There exists a homothety $\mathcal{S}$ sending $\ell$ to $BC$ centered at $A$. Then $\mathcal{S}$ sends $W$ to $T$ and $T'$ to $AT' \cap BC.$ Therefore, $T$ and $AT' \cap BC$ being isotomic conjuates, $AD \cap BC = M'$ is midpoint of $BC$ or $M' \equiv M$ and $\delta ''' \equiv \delta ''$
$\newline
\rule{\textwidth}{0.5pt}
\newline$
Now, $MI$ bisects $\angle AMB$ as it is the defintion of Thebault circle. $X$ being the exsimilicenter of $\odot (I_{1})$ and $\odot (I)\Rightarrow XI$ bisects $\angle SXB.$ Therefore $\odot (I_{1})$ is incircle of $DXM$ or $\delta '' \equiv \delta '.$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#6 • 8 Y
Y by Pluto04, Dr_Vex, hakN, PRMOisTheHardestExam, samrocksnature, Mango247, Mango247, Mango247
The result is nice but the solution is just a combination of some (very) well-known lemmas:
We first show these three lemmas (the labelling of points in these lemma are irrelevant to the original problem).

Lemma 1. (Iran Lemma) In $\triangle ABC$, suppose $I$ is the incentre, $M_a,M_b,M_c$ are the midpoints of $BC,CA,AB$ and $T_a,T_b,T_c$ are the touching points of incircle and $BC,CA,AB$. Then $AI,T_aT_c,M_aM_b$ and the circle with diameter $CI$ are concurrent.
Proof.
Let $X$ be the projection of $C$ onto $AI$, then since $M_bX=M_bC=M_bA$ we have
$$\angle CM_bX=2\angle M_bAX=\angle BAC=\angle CM_bM_a$$and
$$\angle T_bT_aX=\angle T_bCX=90^{\circ}-\frac{\angle BAC}{2}=\angle T_bT_aT_c$$Hence the three line and the circle are concurrent at point $X$ as desired. $\blacksquare$
[asy]
       size(6cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -25.113603016501955, xmax = 11.785607854595835, ymin = -13.639613371565176, ymax = 17.783389525730115;  /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0);  /* draw figures */draw((-15.473293189260673,11.332430976089425)--(-16.111255395965372,-2.1046480026282635), linewidth(0.8)); draw((-16.111255395965372,-2.1046480026282635)--(2.11054013303755,-2.6628649334948733), linewidth(0.8)); draw((2.11054013303755,-2.6628649334948733)--(-15.473293189260673,11.332430976089425), linewidth(0.8)); draw(circle((-11.370259667167469,2.279961860202567), 4.527724159576039), linewidth(0.8) + qqwuqq); draw((-15.473293189260673,11.332430976089425)--(-7.214272491516157,-6.889338207911946), linewidth(0.8) + linetype("4 4") + blue); draw((-15.892889384219655,2.494686119765876)--(-7.214272491516157,-6.889338207911946), linewidth(0.8) + blue); draw((-7.214272491516157,-6.889338207911946)--(-6.681376528111562,4.334783021297276), linewidth(0.8) + linetype("4 4") + blue);  /* dots and labels */dot((-15.473293189260673,11.332430976089425),dotstyle); label("$A$", (-15.171677825967656,12.209392123824001), NE * labelscalefactor); dot((-16.111255395965372,-2.1046480026282635),dotstyle); label("$B$", (-17.457852292178132,-2.7849868520637937), NE * labelscalefactor); dot((2.11054013303755,-2.6628649334948733),dotstyle); label("$C$", (3.08234875337401,-2.491618567752946), NE * labelscalefactor); dot((-11.370259667167469,2.2799618602025666),linewidth(4pt) + dotstyle); label("$I$", (-11.227504225788476,2.5282387415660117), NE * labelscalefactor); dot((-7.0003576314639115,-2.383756468061568),linewidth(4pt) + dotstyle); label("$M_{a}$", (-6.533611676814903,-1.9048819991312493), NE * labelscalefactor); dot((-6.681376528111562,4.334783021297276),linewidth(4pt) + dotstyle); label("$M_{b}$", (-6.305436344573133,4.744799111914642), NE * labelscalefactor); dot((-15.792274292613023,4.613891486730581),linewidth(4pt) + dotstyle); label("$M_{c}$", (-17.89929105579821,4.940377968121874), NE * labelscalefactor); dot((-11.508899524926496,-2.2456392109314236),linewidth(4pt) + dotstyle); label("$T_{a}$", (-12.400977363031869,-4.109516124091807), NE * labelscalefactor); dot((-8.550638429697806,5.822562902151633),linewidth(4pt) + dotstyle); label("$T_{b}$", (-8.39161081078361,6.53760529381427), NE * labelscalefactor); dot((-15.892889384219655,2.494686119765876),linewidth(4pt) + dotstyle); label("$T_{c}$", (-17.825255816143594,2.789010549842321), NE * labelscalefactor); dot((-7.214272491516157,-6.889338207911946),linewidth(4pt) + dotstyle); label("$X$", (-7.348523577678371,-8.0982124456936), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
{Lemma 2.} In $\triangle ABC$, $O$ is the circumcenter. Tangents at $B$ and $C$ to $(ABC)$ meets at $T$. $AT$ intersect the circumcircle again at $D\neq A$. $AO$ intersect $BC$ and $(ABC)$ at $E$ and $A'\neq A$. Then the tangents at $D$, $A'$ to $(ABC)$ and $TE$ are concurrent.
{Proof.}
Suppose the line through $O$ parallel to $AT$ intersect the line $ET$ at a point $F$. We will show that $\triangle DFO\sim\triangle DA'A$ Notice that
$$\angle DOF=\angle ADO=\angle A'AD\hspace{50pt}(1)$$hence it suffices to show $\displaystyle \frac{OF}{OD}=\frac{AA'}{DA}$. Let $R$ be the circumradius of $\triangle ABC$ and $Q$ the $A$-dumpty point of $\triangle ABC$. Then $OD\times AA'=2R^2$. Meanwhile,
$$\frac{OF}{AT}=\frac{OE}{EA}=\frac{OE}{BE}\cdot\frac{BE}{EA}=\frac{\cos A}{\sin 2C}\cdot\frac{\cos C}{\sin B}=\frac{\cos A}{2\sin B\sin C}$$$$\frac{AT}{2R\sin B}=\frac{AT}{AC}=\frac{\sin B}{\sin \angle QTC}=\frac{\sin B}{\sin \angle QBC}$$and $$AD=2R\sin\angle ACD$$Therefore, multiplying them it suffices to show
$$\sin B\cos A\sin\angle ACD=\sin C\sin\angle QBC \hspace{50pt}(2)$$Indeed we have $\cos A=\sin\angle OCB$, and that $B,Q,O,C$ are concyclic so
$$\frac{\cos A\sin\angle ACD}{\sin QBC}=\frac{\sin\angle OCB\sin\angle ACD}{\sin\angle QBC}=\frac{ AD}{2QC}=\frac{QA}{AC}=\frac{\sin\angle BAD}{\sin\angle DAC}=\frac{BD}{DC}=\frac{BA}{AC}=\frac{\sin C}{\sin B}$$as desired.
Therefore, $\triangle DFO\sim\triangle DA'A$, so $\angle ODF=\angle ADA'=90^{\circ}$ and $FD$ is tangent to $(ABC)$. Since $OF\| AD\perp DA'$ hence $FA'$ is tangent to $(ABC)$ as well. Hence the three lines mentioned in the statement of the lemma are concurrent at $F$ as desired. $\blacksquare$

[asy]
    size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -31.324229690975233, xmax = 26.004617634547465, ymin = -26.291270349086002, ymax = 22.529408822118842;  /* image dimensions */pen zzttff = rgb(0.6,0.2,1); pen qqwuqq = rgb(0,0.39215686274509803,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6);  /* draw figures */draw((-14.374874070068559,18.092655468989744)--(-20.552994318817237,-1.1181418008419122), linewidth(0.8)); draw((-20.552994318817237,-1.1181418008419122)--(2.355655946615818,-2.425919079774114), linewidth(0.8)); draw((2.355655946615818,-2.425919079774114)--(-14.374874070068559,18.092655468989744), linewidth(0.8)); draw(circle((-8.67436746721582,5.660565187054879), 13.676719062236636), linewidth(0.8)); draw((-14.374874070068559,18.092655468989744)--(-10.106372746544746,-19.424216947396676), linewidth(0.8)); draw((-10.106372746544746,-19.424216947396676)--(-5.163274322663226,-1.9966888084963736), linewidth(0.8) + zzttff); draw((-20.552994318817237,-1.1181418008419122)--(-10.106372746544746,-19.424216947396676), linewidth(0.8)); draw((-10.106372746544746,-19.424216947396676)--(2.355655946615818,-2.425919079774114), linewidth(0.8)); draw((-11.436392875109853,-7.734353997228942)--(-7.047385602446938,-8.63936502684008), linewidth(0.8) + linetype("4 4") + qqwuqq); draw((-7.047385602446938,-8.63936502684008)--(-2.973860864363081,-6.771525094879985), linewidth(0.8) + linetype("4 4") + qqwuqq); draw((-8.67436746721582,5.660565187054879)--(-7.047385602446938,-8.63936502684008), linewidth(0.8) + fuqqzz); draw((-2.973860864363081,-6.771525094879985)--(-14.374874070068559,18.092655468989744), linewidth(0.8)); draw(circle((-9.390370106880283,-6.881825880170901), 12.562811527012238), linewidth(0.8) + linetype("4 4") + blue);  /* dots and labels */dot((-14.374874070068559,18.092655468989744),dotstyle); label("$A$", (-13.902742517848194,19.440133480372477), NE * labelscalefactor); dot((-20.552994318817237,-1.1181418008419122),dotstyle); label("$B$", (-22.714773820534546,-2.1847939118520743), NE * labelscalefactor); dot((2.355655946615818,-2.425919079774114),dotstyle); label("$C$", (3.873251661708755,-2.1847939118520743), NE * labelscalefactor); dot((-10.106372746544746,-19.424216947396676),linewidth(4pt) + dotstyle); label("$T$", (-10.155097021303424,-20.97366525263734), NE * labelscalefactor); dot((-8.67436746721582,5.660565187054879),linewidth(4pt) + dotstyle); label("$O$", (-8.483849705276702,6.070154952158703), NE * labelscalefactor); dot((-11.436392875109853,-7.734353997228942),linewidth(4pt) + dotstyle); label("$D$", (-12.484714492128552,-8.971070892081793), NE * labelscalefactor); dot((-5.163274322663226,-1.9966888084963736),linewidth(4pt) + dotstyle); label("$E$", (-4.584272634547685,-1.2732044667465896), NE * labelscalefactor); dot((-2.973860864363081,-6.771525094879985),linewidth(4pt) + dotstyle); label("$A'$", (-2.7104498862753004,-5.932439408396844), NE * labelscalefactor); dot((-7.047385602446938,-8.63936502684008),linewidth(4pt) + dotstyle); label("$F$", (-6.407451524758654,-9.983948053310108), NE * labelscalefactor); dot((-12.905633472589205,5.179150735880404),linewidth(4pt) + dotstyle); label("$Q$", (-12.687289924374214,5.563716371544545), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  
[/asy]
Lemma 3. In triangle $ABC$, Suppose the incircle touches $AB,AC,BC$ at $F,E,T$ respectively and $M$ is the midpoint of $BC$. Then $AM,TI,EF$ are concurrent.
Proof.
Let $TI\cap EF=D$, suppose the line through $D$ parallel to $BC$
meet $AB$ and $AC$ at $C_0$ and $B_0$. Then from $\angle IDC_0=\angle C_0FI=90^{\circ}$, $I,D,C_0,F$ are concyclic and similarly $I,D,B_0,E$ are concyclic.Hence
$$\angle IC_0D=\angle IFD=\angle IED=\angle IB_0D$$hence $C_0D=B_0D$, a homothety at $A$ which sends $B_0C_0$ to $CB$ will send $D$ to $M$, so $A,D,M$ are collinear. $\blacksquare$
[asy]
     size(4.5cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -32.894189290879126, xmax = 24.434658034643572, ymin = -21.125596826821585, ymax = 27.69508234438326;  /* image dimensions */ /* draw figures */draw((-14.374874070068559,18.092655468989744)--(-20.552994318817237,-1.1181418008419122), linewidth(0.8)); draw((-20.552994318817237,-1.1181418008419122)--(2.355655946615818,-2.425919079774114), linewidth(0.8)); draw((2.355655946615818,-2.425919079774114)--(-14.374874070068559,18.092655468989744), linewidth(0.8)); draw(circle((-8.67436746721582,5.660565187054879), 13.676719062236636), linewidth(0.8)); draw(circle((-11.874134114218796,4.836100212125678), 6.439204988260723), linewidth(0.8)); draw((-14.374874070068559,18.092655468989744)--(-9.09866918610071,-1.7720304403080132), linewidth(0.8) + linetype("4 4") + blue); draw((-18.0041416656128,6.807487617151449)--(-6.883629913702524,8.905280560238946), linewidth(0.8)); draw((-12.241129014924097,-1.592638048505103)--(-11.69363696462785,7.997912349787755), linewidth(0.8)); draw((-17.514442304644433,8.33020241841075)--(-5.8728316246112655,7.665622281164762), linewidth(0.8));  /* dots and labels */dot((-14.374874070068559,18.092655468989744),dotstyle); label("$A$", (-13.902742517848194,19.44013348037248), NE * labelscalefactor); dot((-20.552994318817237,-1.1181418008419122),dotstyle); label("$B$", (-22.714773820534546,-2.1847939118520685), NE * labelscalefactor); dot((2.355655946615818,-2.425919079774114),dotstyle); label("$C$", (3.873251661708755,-2.1847939118520685), NE * labelscalefactor); dot((-11.874134114218796,4.836100212125678),linewidth(4pt) + dotstyle); label("$I$", (-13.24437236304979,4.702770784500482), NE * labelscalefactor); dot((-9.09866918610071,-1.7720304403080132),linewidth(4pt) + dotstyle); label("$M$", (-9.24350757619794,-3.602821937571711), NE * labelscalefactor); dot((-12.241129014924097,-1.592638048505103),linewidth(4pt) + dotstyle); label("$T$", (-12.889865356619879,-3.349602647264632), NE * labelscalefactor); dot((-18.0041416656128,6.807487617151449),linewidth(4pt) + dotstyle); label("$F$", (-19.98000548521809,5.918223377974461), NE * labelscalefactor); dot((-6.883629913702524,8.905280560238946),linewidth(4pt) + dotstyle); label("$E$", (-6.761958531188565,10.020375880949143), NE * labelscalefactor); dot((-11.69363696462785,7.997912349787755),linewidth(4pt) + dotstyle); label("$D$", (-13.193728504988373,8.298484706861004), NE * labelscalefactor); dot((-17.514442304644433,8.33020241841075),linewidth(4pt) + dotstyle); label("$C_0$", (-19.16970375623544,9.362005726150736), NE * labelscalefactor); dot((-5.8728316246112655,7.665622281164762),linewidth(4pt) + dotstyle); label("$B_0$", (-4.482984918424854,7.234963687571272), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
We now return to the original problem. Let $I$ be the incentre. Suppose the incircle touches $AB,AC$ at $F,E$ respectively, and $T'$ be the reflection of $T$ in $I$. Suppose the tangent to $\omega $ at $S$ intersect $AM$ and $BC$ at $L$ and $K$ respectively.
\newline Applying Lemma 3 to $\triangle TFE$ we have that $TI\cap EF$ lies on $AM$, so by Lemma $2$ $LI'$ is tangent to $\omega$. Hence
$$\text{dist}(L,BC)=\text{dist}(T',BC)=2\text{dist}(I,BC)$$which implies that $I$ lies on the line passing through the midpoint of $LM$ and $LK$. By Lemma $1$ if the incircle of $\delta$ intersects $AM$ and $BC$ at $R$ and $Q$ then $Q,I,R$ are collinear.
Let $N$ be the midpoint of minor arc of $(ABC)$ and suppose $NQ$ meet $(ABC)$ again at $P$. Then by shooting lemma we have $\triangle NIP\sim\triangle NQI$, hence letting $Z=BC\cap AN$ we have
$$\angle API=\angle APN-\angle IPN=\angle ADC-\angle QIN=\angle ZQR=\angle QRM$$so $A,P,I,R$ are concyclic. Therefore
$$\angle ARP=\angle AIP=180^{\circ}-\angle PIN=180^{\circ}-\angle IQN=\angle PQI=\angle PQR $$therefore $P$ lies on the incircle $\Omega$ of $\delta$. Since $P,Q,N$ are collinear, and the tangent at $Q$ to $\Omega$ and the tangent at $N$
to $(ABC)$ are parallel, $P$ is the homothetic center of the two circles, so they are tangent to each other at $P$ as desired.
[asy]
       size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -39.731110129170304, xmax = 17.597737196352444, ymin = -16.567649601294185, ymax = 32.253029569910694;  /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0); pen zzttff = rgb(0.6,0.2,1); pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen ffvvqq = rgb(1,0.3333333333333333,0);  /* draw figures */draw((-20.840951072262172,17.16115986760877)--(-20.552994318817237,-1.1181418008419122), linewidth(0.8)); draw((-20.552994318817237,-1.1181418008419122)--(2.355655946615818,-2.425919079774114), linewidth(0.8)); draw((2.355655946615818,-2.425919079774114)--(-20.840951072262172,17.16115986760877), linewidth(0.8)); draw(circle((-8.528646267326517,8.213198619598536), 15.220343626394724), linewidth(0.8) + blue); draw(circle((-14.79503500674136,4.40694267669045), 5.844271730522242), linewidth(0.8) + qqwuqq); draw((-20.840951072262172,17.16115986760877)--(-9.09866918610071,-1.7720304403080132), linewidth(0.8)); draw((-15.128122387458081,-1.4278293717265884)--(-14.637906265676204,7.159404761555945), linewidth(0.8)); draw((-15.128122387458081,-1.4278293717265884)--(-20.840951072262172,17.16115986760877), linewidth(0.8)); draw((-30.858779077399813,-0.5298194425763711)--(-20.552994318817237,-1.1181418008419122), linewidth(0.8)); draw(circle((-17.891832472445245,3.455224798686322), 4.7176025178930185), linewidth(0.8) + zzttff); draw((-18.16070666899243,-1.2547094028988401)--(-13.88268058412491,5.941683053555706), linewidth(0.8) + linetype("4 4") + fuqqzz); draw((-30.858779077399813,-0.5298194425763711)--(-16.626165276185233,10.365262583089093), linewidth(0.8)); draw((-22.09757175140484,1.3180466043733277)--(-9.396111817507435,-6.982404811156817), linewidth(0.8) + blue); draw(circle((-21.132453628968747,9.2128898763403), 7.953615736203047), linewidth(0.8) + linetype("4 4") + ffvvqq);  /* dots and labels */dot((-20.840951072262172,17.16115986760877),dotstyle); label("$A$", (-20.385156349709447,18.528544035267), NE * labelscalefactor); dot((-20.552994318817237,-1.1181418008419122),dotstyle); label("$B$", (-22.157691381859003,-2.5393009182819926), NE * labelscalefactor); dot((2.355655946615818,-2.425919079774114),dotstyle); label("$C$", (3.873251661708747,-2.1847939118520814), NE * labelscalefactor); dot((-14.795035006741358,4.4069426766904485),linewidth(4pt) + dotstyle); label("$I$", (-16.13107227255052,4.804058500623305), NE * labelscalefactor); dot((-9.09866918610071,-1.7720304403080132),linewidth(4pt) + dotstyle); label("$M$", (-9.24350757619796,-3.602821937571725), NE * labelscalefactor); dot((-15.128122387458081,-1.4278293717265884),linewidth(4pt) + dotstyle); label("$T$", (-14.763688104892289,-2.5899447763434083), NE * labelscalefactor); dot((-20.638581709030028,4.314888353854959),linewidth(4pt) + dotstyle); label("$F$", (-19.52421076266538,4.348263778070563), NE * labelscalefactor); dot((-11.024554126395294,8.872251847523556),linewidth(4pt) + dotstyle); label("$E$", (-10.914754892224684,9.96973202288772), NE * labelscalefactor); dot((-14.637906265676204,7.159404761555945),linewidth(4pt) + dotstyle); label("$D$", (-14.763688104892289,8.095909274615336), NE * labelscalefactor); dot((-18.34746677353521,9.047604332365786),linewidth(4pt) + dotstyle); label("$S$", (-19.87871776909529,9.513937300334979), NE * labelscalefactor); dot((-30.858779077399813,-0.5298194425763711),linewidth(4pt) + dotstyle); label("$K$", (-30.919078826483947,-2.4380132021591607), NE * labelscalefactor); dot((-16.626165276185233,10.365262583089093),linewidth(4pt) + dotstyle); label("$L$", (-16.738798569287507,11.1851846163617), NE * labelscalefactor); dot((-18.16070666899243,-1.2547094028988401),linewidth(4pt) + dotstyle); label("$Q$", (-18.359402027252816,-2.4886570602205764), NE * labelscalefactor); dot((-22.09757175140484,1.3180466043733277),linewidth(4pt) + dotstyle); label("$P$", (-23.17056854308732,0.3473989912187107), NE * labelscalefactor); dot((-9.396111817507435,-6.982404811156817),linewidth(4pt) + dotstyle); label("$N$", (-10.003165447119198,-8.464632311467646), NE * labelscalefactor); dot((-13.88268058412491,5.941683053555706),linewidth(4pt) + dotstyle); label("$R$", (-13.700167085602557,6.32337424246578), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
buratinogigle
2405 posts
#7 • 4 Y
Y by amar_04, Dr_Vex, VMF-er, LoloChen
I like this beautiful problem much. The following is a generalization of the view of the harmonic range points.

Let incircle $(I)$ of triangle $ABC$ touch $BC$ at $D$. A tangent $\ell$ of $(I)$ meets $BC$ at $S$. $P$ is a point on line $BC$ such that $\overline{SP}\cdot \overline{SD}=\overline{SB}\cdot \overline{SC}$. Line $\ell$ meets $AP$ at $T$. Prove that incircle of triangle $PST$ is tangent to circumcircle of $ABC$.

Click to reveal hidden text
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
amar_04
1916 posts
#8 • 3 Y
Y by buratinogigle, Mathematicsislovely, Bumblebee60
buratinogigle wrote:
I like this beautiful problem much. The following is a generalization of the view of the harmonic range points.

Let incircle $(I)$ of triangle $ABC$ touch $BC$ at $D$. A tangent $\ell$ of $(I)$ meets $BC$ at $S$. $P$ is a point on line $BC$ such that $\overline{SP}\cdot \overline{SD}=\overline{SB}\cdot \overline{SC}$. Line $\ell$ meets $AP$ at $T$. Prove that incircle of triangle $PST$ is tangent to circumcircle of $ABC$.

Click to reveal hidden text


Let $\omega_1$ and $\omega_2$ with circumcenters $O_1,O_2$ respectively be the two thebault circles of $\Delta ABC$ WRT $\overline{AP}$. Let the exsimillicenter of $\{\odot(I),\omega_1,\omega_2\}$ (which obviously exists due to Sawayama) be $S$. We show that $SD\cdot SP=SB\cdot SC$. Let $I_A$ be the $A-$ Excenter of $\Delta ABC$. From the $\textbf{LEMMA}$ in #3 we get that $\overline{PI_A}\perp\overline{O_AO_B}$. Let $\overline{PI_A}\cap\overline{IS}=K$. Clearly $K\in\odot(II_A)$. Hence, $SD\cdot SP=SI\cdot SK=SB\cdot SC$. $\blacksquare$

Remark:- Using this problem as a lemma for the case when $P$ is the $A-$ Extouch point we get the well known fact that the Thebault Circles WRT $A-$ Nagel Cevian are congruent to $\odot(I)$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dolly33
88 posts
#9 • 1 Y
Y by SK_pi3145
This problem clearly brings up some Thebault circles.

Generalized Lemma
Triangle $ABC$, arbitrary point $D$ on segment $BC$. Let $\omega_1, \omega_2$ circles that are tangent to $BC, (ABC), AD$, respectively from left.
If $X$ is the foot from incenter $I$ to $BC$, and $Y=\omega_1\cap (ABC), Z=\omega_2 \cap (ABC)$, $Z, Y, X, D$ are cyclic.

pf. From well-known lemma (Sawayama the bault), we easily get $O_1, I, O_2$ are collinear when $O_1, O_2$ are centers of thebault circles.
Let $P, Q=\omega_1\cap BC, Z=\omega_2 \cap BC$. Note that $\angle PIQ=90$. Let $R=(PIQ)\cap O_1O_2$.
Since $O_1P^2=O_1R\cdot O_1I$, $DR$ is the polar of $I$ wrt $\omega_1$. Thus $DR\perp O_1O_2$.
Let $S=YZ\cap BC$. $SY\cdot SZ=SP\cdot SQ=SI\cdot SR=SX\cdot SD$.

Now back to the problem. All we need to prove is that when $D$ is the midpoint of $BC$, $S$ is $EF\cap BC$ when $E, F=\omega \cap AC,AB$

From Lemma, we get $SC\cdot SB=SX\cdot SD$, since $D$ is the midpoint of $BC$, by Newton Lemma we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
khina
995 posts
#10 • 1 Y
Y by PRMOisTheHardestExam
uhhhhhhhhh

solution sketch
This post has been edited 1 time. Last edited by khina, Sep 25, 2021, 9:17 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
meysam1371
35 posts
#11 • 2 Y
Y by teomihai, PRMOisTheHardestExam
Here is another aproach:

Let tangent to $\omega$ at $S$ intersects $BC$ and $AM$ at $Q$ and $P$ respectively, and $N$ in second intersection of $IT$ with $\omega$.It is known that $PN$ is tangent to $\omega$ (its proof is simple!). Also $V$ is reflection of $P$ to $I$. We call the circle tangent to $BC$, segment $AM$ and circumcircle of triangle $\triangle ABC$, by $\gamma$. let $\gamma$ touch $AM$ and $BC$ at $U$ and $R$ respectively. We should prove that $\gamma$ is incircle of $\delta$. By Sawayama-Thebault lemma, we know that $I$ lies on $RU$.
It is enough to prove that incircle of $\delta$ touches $QM$ at $R$, or equivalently

$$ MR = \frac{1}{2}\left( MQ + MP - QP \right) \quad \Leftrightarrow \quad 2MR = MT+TQ+MP-QS-SP $$$$ \quad \Leftrightarrow \quad MT+TR+MU=MT+MU+UP-PN \quad \Leftrightarrow \quad$$$$RT+VT=UP \quad \Leftrightarrow \quad RV=WV$$where $W$ is intersection of $RU$ with the line parallel to $PU$ through $V$. Clearly triangle $\triangle VWR$ is Isosceles and $RV=WV$. We are done. $\blacksquare$

https://i.postimg.cc/7Z19pPB9/geogebra-export-2.png
This post has been edited 3 times. Last edited by meysam1371, Jan 21, 2022, 9:59 AM
Reason: some minor improvements.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SerdarBozdag
892 posts
#12 • 3 Y
Y by teomihai, PRMOisTheHardestExam, GeoKing
Also there exists a solution by proving $ZB/ZC=(s-b)/(s-c)$ with ratio lemma and Casey's theorem. However I won't write it because I accidentally refreshed the page twice. :(
Attachments:
This post has been edited 1 time. Last edited by SerdarBozdag, Jan 21, 2022, 3:22 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nari_Tom
117 posts
#14
Y by
Once you realize this condition problem will become just another challenging one, not impossible one.

Let $ABC$ be a triangle and $D$ be the point on the side $BC$. Let $\omega$ be the circle that touches $(ABC)$ internally and also touches $AD$, $CD$ at $F$ and $E$, respectively. Prove that $FE$ passes through the incenter.

Proof: Let $a, b, c$ be the side lengths. We let's use Casey's theorem on the $(ABC)$ and four other circles $A, B, C, \omega$. Then we have: $AF \cdot BC+CE \cdot AB= BE \cdot AC$ $\implies$ $AF \cdot a+ac=(b+c) \cdot BE=(b+c) \cdot (BL+LE)=(b+c)BL+(b+c)LE=ac+(b+c)BL$. $\implies$ $\frac{AF}{LE}=\frac{b+c}{a}$.
By the Menelaus theorem on $\triangle ALD$ and line I-F-E, we should prove that: $\frac{LI}{AI} \cdot \frac{AF}{FD} \cdot \frac{DE}{LE}=\frac{LI}{AI} \cdot \frac{AF}{LE}=\frac{a}{b+c} \cdot \frac{AF}{LE}=1$, which is true since we found it earlier, done.
Z K Y
N Quick Reply
G
H
=
a