Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
2-var inequality
sqing   4
N 2 minutes ago by mathuz
Source: Own
Let $ a,b\geq 0    $. Prove that
$$ \frac{a }{a^2+2b^2+1}+ \frac{b }{b^2+2a^2+1}\leq \frac{1}{\sqrt{3}} $$$$   \frac{a }{2a^2+ b^2+2ab+1}+ \frac{b }{2b^2+ a^2+2ab+1}  \leq \frac{1}{\sqrt{5}} $$$$ \frac{a }{2a^2+ b^2+ ab+1}+ \frac{b }{2b^2+ a^2+ ab+1} \leq \frac{1}{2} $$$$\frac{a }{a^2+2b^2+2ab+1}+ \frac{b }{b^2+2a^2+2ab+1}\leq \frac{1}{2} $$
4 replies
2 viewing
sqing
3 hours ago
mathuz
2 minutes ago
How many numbers
brokendiamond   0
17 minutes ago
How many 5-digit numbers can be formed using the digits 1, 3, 5, 7, 9 such that the smaller digits are not positioned between two larger digits?
0 replies
brokendiamond
17 minutes ago
0 replies
Sum of squares in 1865
Twoisaprime   2
N 22 minutes ago by EmptyMachine
Source: 2024 CWMO P1
For positive integer $n$, note $S_n=1^{2024}+2^{2024}+ \cdots +n^{2024}$.
Prove that there exists infinitely many positive integers $n$, such that $S_n$ isn’t divisible by $1865$ but $S_{n+1}$ is divisible by $1865$
2 replies
Twoisaprime
Aug 6, 2024
EmptyMachine
22 minutes ago
USA 97 [1/(b^3+c^3+abc) + ... >= 1/(abc)]
Maverick   47
N 23 minutes ago by justaguy_69
Source: USAMO 1997/5; also: ineq E2.37 in Book: Inegalitati; Authors:L.Panaitopol,V. Bandila,M.Lascu
Prove that, for all positive real numbers $ a$, $ b$, $ c$, the inequality
\[ \frac {1}{a^3 + b^3 + abc} + \frac {1}{b^3 + c^3 + abc} + \frac {1}{c^3 + a^3 + abc} \leq \frac {1}{abc}
\]
holds.
47 replies
Maverick
Sep 12, 2003
justaguy_69
23 minutes ago
XZ passes through the midpoint of BK, isosceles, KX = CX, angle bisector
parmenides51   5
N Saturday at 4:26 PM by Kyj9981
Source: 1st Girls in Mathematics Tournament 2019 p5 (Brazil) / Torneio Meninas na Matematica (TM^2 )
Let $ABC$ be an isosceles triangle with $AB = AC$. Let $X$ and $K$ points over $AC$ and $AB$, respectively, such that $KX = CX$. Bisector of $\angle AKX$ intersects line $BC$ at $Z$. Show that $XZ$ passes through the midpoint of $BK$.
5 replies
parmenides51
May 25, 2020
Kyj9981
Saturday at 4:26 PM
Problem 1 (First Day)
Valentin Vornicu   136
N May 2, 2025 by Rayvhs
1. Let $ABC$ be an acute-angled triangle with $AB\neq AC$. The circle with diameter $BC$ intersects the sides $AB$ and $AC$ at $M$ and $N$ respectively. Denote by $O$ the midpoint of the side $BC$. The bisectors of the angles $\angle BAC$ and $\angle MON$ intersect at $R$. Prove that the circumcircles of the triangles $BMR$ and $CNR$ have a common point lying on the side $BC$.
136 replies
Valentin Vornicu
Jul 12, 2004
Rayvhs
May 2, 2025
Show that CK is parallel to AB
Math-lover123   45
N May 1, 2025 by reni_wee
Source: Sharygin First Round 2013, Problem 16
The incircle of triangle $ABC$ touches $BC$, $CA$, $AB$ at points $A_1$, $B_1$, $C_1$, respectively. The perpendicular from the incenter $I$ to the median from vertex $C$ meets the line $A_1B_1$ in point $K$. Prove that $CK$ is parallel to $AB$.
45 replies
Math-lover123
Apr 8, 2013
reni_wee
May 1, 2025
Necessary and sufficient condition
Fang-jh   7
N May 1, 2025 by MathLuis
Source: Chinese TST 2009 3rd quiz P2
In convex quadrilateral $ ABCD$, $ CB,DA$ are external angle bisectors of $ \angle DCA,\angle CDB$, respectively. Points $ E,F$ lie on the rays $ AC,BD$ respectively such that $ CEFD$ is cyclic quadrilateral. Point $ P$ lie in the plane of quadrilateral $ ABCD$ such that $ DA,CB$ are external angle bisectors of $ \angle PDE,\angle PCF$ respectively. $ AD$ intersects $ BC$ at $ Q.$ Prove that $ P$ lies on $ AB$ if and only if $ Q$ lies on segment $ EF$.
7 replies
Fang-jh
Mar 22, 2009
MathLuis
May 1, 2025
Easy Geometry
ayan.nmath   41
N Apr 30, 2025 by L13832
Source: Indian TST 2019 Practice Test 2 P1
Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.
41 replies
ayan.nmath
Jul 17, 2019
L13832
Apr 30, 2025
Trillium geometry
Assassino9931   4
N Apr 28, 2025 by Rayvhs
Source: Bulgaria EGMO TST 2018 Day 2 Problem 1
The angle bisectors at $A$ and $C$ in a non-isosceles triangle $ABC$ with incenter $I$ intersect its circumcircle $k$ at $A_0$ and $C_0$, respectively. The line through $I$, parallel to $AC$, intersects $A_0C_0$ at $P$. Prove that $PB$ is tangent to $k$.
4 replies
Assassino9931
Feb 3, 2023
Rayvhs
Apr 28, 2025
CGMO5: Carlos Shine's Fact 5
v_Enhance   60
N Apr 27, 2025 by Sedro
Source: 2012 China Girl's Mathematical Olympiad
As shown in the figure below, the in-circle of $ABC$ is tangent to sides $AB$ and $AC$ at $D$ and $E$ respectively, and $O$ is the circumcenter of $BCI$. Prove that $\angle ODB = \angle OEC$.
IMAGE
60 replies
v_Enhance
Aug 13, 2012
Sedro
Apr 27, 2025
B.Math - geometry
mynamearzo   9
N Apr 25, 2025 by Apple_maths60
In a triangle $ABC$ , $D$ is a point on $BC$ such that $AD$ is the internal bisector of $\angle A$ . Now Suppose $\angle B$=$2\angle C$ and $CD=AB$ . Prove that $\angle A=72^0$.
9 replies
mynamearzo
Jun 17, 2012
Apple_maths60
Apr 25, 2025
Prove excircle is tangent to circumcircle
sarjinius   8
N Apr 24, 2025 by Lyzstudent
Source: Philippine Mathematical Olympiad 2025 P4
Let $ABC$ be a triangle with incenter $I$, and let $D$ be a point on side $BC$. Points $X$ and $Y$ are chosen on lines $BI$ and $CI$ respectively such that $DXIY$ is a parallelogram. Points $E$ and $F$ are chosen on side $BC$ such that $AX$ and $AY$ are the angle bisectors of angles $\angle BAE$ and $\angle CAF$ respectively. Let $\omega$ be the circle tangent to segment $EF$, the extension of $AE$ past $E$, and the extension of $AF$ past $F$. Prove that $\omega$ is tangent to the circumcircle of triangle $ABC$.
8 replies
sarjinius
Mar 9, 2025
Lyzstudent
Apr 24, 2025
Prove perpendicular
shobber   29
N Apr 23, 2025 by zuat.e
Source: APMO 2000
Let $ABC$ be a triangle. Let $M$ and $N$ be the points in which the median and the angle bisector, respectively, at $A$ meet the side $BC$. Let $Q$ and $P$ be the points in which the perpendicular at $N$ to $NA$ meets $MA$ and $BA$, respectively. And $O$ the point in which the perpendicular at $P$ to $BA$ meets $AN$ produced.

Prove that $QO$ is perpendicular to $BC$.
29 replies
shobber
Apr 1, 2006
zuat.e
Apr 23, 2025
Hard Polynomial Problem
MinhDucDangCHL2000   1
N Apr 16, 2025 by Tung-CHL
Source: IDK
Let $P(x)$ be a polynomial with integer coefficients. Suppose there exist infinitely many integer pairs $(a,b)$ such that $P(a) + P(b) = 0$. Prove that the graph of $P(x)$ is symmetric about a point (i.e., it has a center of symmetry).
1 reply
MinhDucDangCHL2000
Apr 16, 2025
Tung-CHL
Apr 16, 2025
Hard Polynomial Problem
G H J
Source: IDK
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MinhDucDangCHL2000
2 posts
#1 • 1 Y
Y by Mhuy
Let $P(x)$ be a polynomial with integer coefficients. Suppose there exist infinitely many integer pairs $(a,b)$ such that $P(a) + P(b) = 0$. Prove that the graph of $P(x)$ is symmetric about a point (i.e., it has a center of symmetry).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tung-CHL
126 posts
#3 • 3 Y
Y by MinhDucDangCHL2000, Mhuy, ZeltaQN2008
Nice problem!

Let's plot the graph of a polynomial function $y=P(x)$ on the Cartesian coordinate plane. If it has a center of symmetry, we can translate the graph so the center moves to the origin $O(0,0)$, and the resulting function becomes an odd function. This means the graph of $P(x)$ is symmetric about a point $(\alpha, \beta)$ if and only if the translated function $Q(x) = P(x+\alpha) - \beta$ is an odd function, i.e., $P(x+\alpha) + P(-x+\alpha) = 2\beta$ holds for some fixed $\alpha, \beta$ and for all $x$.

Now, it is easy to see that a polynomial satisfying the problem's given condition must be of odd degree. We can also assume it is monic:
$$ P(x)= x^n+a_{n-1}x^{n-1}+\dots+a_1x+a_0. $$Thus, we can fix some integers $a,b\in \mathbb Z$ with $a>0, b<0$ such that $P(a)=P(b)$, and the function $P(x)$ increases on $(a,+\infty)$ and decreases on $(-\infty,b)$. Without loss of generality (WLOG), assume $a\geq-b$. Let $t=a+b+1$. Since $a\ge -b$ and $a>0$, we have $a+b \ge 0$, so $t \ge 1 > 0$.

Claim: $P(a+m+t)>-P(b-m)$ for all sufficiently large $m$.

Claim proof: The inequality $P(a+m+t)>-P(b-m)$ is equivalent to $$[n(a+t)+1]m^{n-1}+\text{lower order terms in } m > [-nb+1]m^{n-1} +\text{lower order terms in} \;m.$$This is always true for sufficiently large $m$. $\square$

Now, assume there are infinitely many pairs of sufficiently large positive integers $(h,k)$ such that $P(a+h)=-P(b-k)$. From the claim, we must have $h < k+t$, or $h-k < t$. Similarly, one can argue that $h-k > -t$. This means that for these infinitely many pairs $(h,k)$, the integer difference $(h-k)$ must lie in the finite interval $[-t, t]$. By the Pigeonhole Principle (PHP), since there are infinitely many such pairs $(h,k)$ but only a finite number of integer values in $[-t, t]$, there must be infinitely many pairs $(h,k)$ satisfying the condition $P(a+h)=-P(b-k)$ for which $h-k=q$ for some fixed integer $q \in [-t, t]$.

Therefore, there are infinitely many integers $h$ such that
$$ P(a+h)=-P(b-h+q). $$By the identity theorem for polynomials, this implies the polynomial identity:
$$ P(a+x) \equiv -P(-x+b+q). $$Let $\alpha = \frac{a+b+q}{2}$. Replacing $x$ with $x-\frac{a-b-q}{2}$ in the identity gives:
$$ P\left(x+\frac{a+b+q}{2}\right) = -P\left(-x+\frac{a+b+q}{2}\right). $$This equation signifies that the function $Q(x) = P\left(x+\frac{a+b+q}{2}\right)$ is an odd function ($Q(x)=-Q(-x)$), which means the graph of the original polynomial $P(x)$ has a center of symmetry.
This post has been edited 1 time. Last edited by Tung-CHL, Apr 16, 2025, 4:18 PM
Reason: Grammar
Z K Y
N Quick Reply
G
H
=
a