Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Peer-to-Peer Programs Forum
jwelsh   157
N Dec 11, 2023 by cw357
Many of our AoPS Community members share their knowledge with their peers in a variety of ways, ranging from creating mock contests to creating real contests to writing handouts to hosting sessions as part of our partnership with schoolhouse.world.

To facilitate students in these efforts, we have created a new Peer-to-Peer Programs forum. With the creation of this forum, we are starting a new process for those of you who want to advertise your efforts. These advertisements and ensuing discussions have been cluttering up some of the forums that were meant for other purposes, so we’re gathering these topics in one place. This also allows students to find new peer-to-peer learning opportunities without having to poke around all the other forums.

To announce your program, or to invite others to work with you on it, here’s what to do:

1) Post a new topic in the Peer-to-Peer Programs forum. This will be the discussion thread for your program.

2) Post a single brief post in this thread that links the discussion thread of your program in the Peer-to-Peer Programs forum.

Please note that we’ll move or delete any future advertisement posts that are outside the Peer-to-Peer Programs forum, as well as any posts in this topic that are not brief announcements of new opportunities. In particular, this topic should not be used to discuss specific programs; those discussions should occur in topics in the Peer-to-Peer Programs forum.

Your post in this thread should have what you're sharing (class, session, tutoring, handout, math or coding game/other program) and a link to the thread in the Peer-to-Peer Programs forum, which should have more information (like where to find what you're sharing).
157 replies
jwelsh
Mar 15, 2021
cw357
Dec 11, 2023
k i C&P posting recs by mods
v_Enhance   0
Jun 12, 2020
The purpose of this post is to lay out a few suggestions about what kind of posts work well for the C&P forum. Except in a few cases these are mostly meant to be "suggestions based on historical trends" rather than firm hard rules; we may eventually replace this with an actual list of firm rules but that requires admin approval :) That said, if you post something in the "discouraged" category, you should not be totally surprised if it gets locked; they are discouraged exactly because past experience shows they tend to go badly.
-----------------------------
1. Program discussion: Allowed
If you have questions about specific camps or programs (e.g. which classes are good at X camp?), these questions fit well here. Many camps/programs have specific sub-forums too but we understand a lot of them are not active.
-----------------------------
2. Results discussion: Allowed
You can make threads about e.g. how you did on contests (including AMC), though on AMC day when there is a lot of discussion. Moderators and administrators may do a lot of thread-merging / forum-wrangling to keep things in one place.
-----------------------------
3. Reposting solutions or questions to past AMC/AIME/USAMO problems: Allowed
This forum contains a post for nearly every problem from AMC8, AMC10, AMC12, AIME, USAJMO, USAMO (and these links give you an index of all these posts). It is always permitted to post a full solution to any problem in its own thread (linked above), regardless of how old the problem is, and even if this solution is similar to one that has already been posted. We encourage this type of posting because it is helpful for the user to explain their solution in full to an audience, and for future users who want to see multiple approaches to a problem or even just the frequency distribution of common approaches. We do ask for some explanation; if you just post "the answer is (B); ez" then you are not adding anything useful.

You are also encouraged to post questions about a specific problem in the specific thread for that problem, or about previous user's solutions. It's almost always better to use the existing thread than to start a new one, to keep all the discussion in one place easily searchable for future visitors.
-----------------------------
4. Advice posts: Allowed, but read below first
You can use this forum to ask for advice about how to prepare for math competitions in general. But you should be aware that this question has been asked many many times. Before making a post, you are encouraged to look at the following:
[list]
[*] Stop looking for the right training: A generic post about advice that keeps getting stickied :)
[*] There is an enormous list of links on the Wiki of books / problems / etc for all levels.
[/list]
When you do post, we really encourage you to be as specific as possible in your question. Tell us about your background, what you've tried already, etc.

Actually, the absolute best way to get a helpful response is to take a few examples of problems that you tried to solve but couldn't, and explain what you tried on them / why you couldn't solve them. Here is a great example of a specific question.
-----------------------------
5. Publicity: use P2P forum instead
See https://artofproblemsolving.com/community/c5h2489297_peertopeer_programs_forum.
Some exceptions have been allowed in the past, but these require approval from administrators. (I am not totally sure what the criteria is. I am not an administrator.)
-----------------------------
6. Mock contests: use Mock Contests forum instead
Mock contests should be posted in the dedicated forum instead:
https://artofproblemsolving.com/community/c594864_aops_mock_contests
-----------------------------
7. AMC procedural questions: suggest to contact the AMC HQ instead
If you have a question like "how do I submit a change of venue form for the AIME" or "why is my name not on the qualifiers list even though I have a 300 index", you would be better off calling or emailing the AMC program to ask, they are the ones who can help you :)
-----------------------------
8. Discussion of random math problems: suggest to use MSM/HSM/HSO instead
If you are discussing a specific math problem that isn't from the AMC/AIME/USAMO, it's better to post these in Middle School Math, High School Math, High School Olympiads instead.
-----------------------------
9. Politics: suggest to use Round Table instead
There are important conversations to be had about things like gender diversity in math contests, etc., for sure. However, from experience we think that C&P is historically not a good place to have these conversations, as they go off the rails very quickly. We encourage you to use the Round Table instead, where it is much more clear that all posts need to be serious.
-----------------------------
10. MAA complaints: discouraged
We don't want to pretend that the MAA is perfect or that we agree with everything they do. However, we chose to discourage this sort of behavior because in practice most of the comments we see are not useful and some are frankly offensive.
[list] [*] If you just want to blow off steam, do it on your blog instead.
[*] When you have criticism, it should be reasoned, well-thought and constructive. What we mean by this is, for example, when the AOIME was announced, there was great outrage about potential cheating. Well, do you really think that this is something the organizers didn't think about too? Simply posting that "people will cheat and steal my USAMOO qualification, the MAA are idiots!" is not helpful as it is not bringing any new information to the table.
[*] Even if you do have reasoned, well-thought, constructive criticism, we think it is actually better to email it the MAA instead, rather than post it here. Experience shows that even polite, well-meaning suggestions posted in C&P are often derailed by less mature users who insist on complaining about everything.
[/list]
-----------------------------
11. Memes and joke posts: discouraged
It's fine to make jokes or lighthearted posts every so often. But it should be done with discretion. Ideally, jokes should be done within a longer post that has other content. For example, in my response to one user's question about olympiad combinatorics, I used a silly picture of Sogiita Gunha, but it was done within a context of a much longer post where it was meant to actually make a point.

On the other hand, there are many threads which consist largely of posts whose only content is an attached meme with the word "MAA" in it. When done in excess like this, the jokes reflect poorly on the community, so we explicitly discourage them.
-----------------------------
12. Questions that no one can answer: discouraged
Examples of this: "will MIT ask for AOIME scores?", "what will the AIME 2021 cutoffs be (asked in 2020)", etc. Basically, if you ask a question on this forum, it's better if the question is something that a user can plausibly answer :)
-----------------------------
13. Blind speculation: discouraged
Along these lines, if you do see a question that you don't have an answer to, we discourage "blindly guessing" as it leads to spreading of baseless rumors. For example, if you see some user posting "why are there fewer qualifiers than usual this year?", you should not reply "the MAA must have been worried about online cheating so they took fewer people!!". Was sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss man schweigen.
-----------------------------
14. Discussion of cheating: strongly discouraged
If you have evidence or reasonable suspicion of cheating, please report this to your Competition Manager or to the AMC HQ; these forums cannot help you.
Otherwise, please avoid public discussion of cheating. That is: no discussion of methods of cheating, no speculation about how cheating affects cutoffs, and so on --- it is not helpful to anyone, and it creates a sour atmosphere. A longer explanation is given in Seriously, please stop discussing how to cheat.
-----------------------------
15. Cutoff jokes: never allowed
Whenever the cutoffs for any major contest are released, it is very obvious when they are official. In the past, this has been achieved by the numbers being posted on the official AMC website (here) or through a post from the AMCDirector account.

You must never post fake cutoffs, even as a joke. You should also refrain from posting cutoffs that you've heard of via email, etc., because it is better to wait for the obvious official announcement. A longer explanation is given in A Treatise on Cutoff Trolling.
-----------------------------
16. Meanness: never allowed
Being mean is worse than being immature and unproductive. If another user does something which you think is inappropriate, use the Report button to bring the post to moderator attention, or if you really must reply, do so in a way that is tactful and constructive rather than inflammatory.
-----------------------------

Finally, we remind you all to sit back and enjoy the problems. :D

-----------------------------
(EDIT 2024-09-13: AoPS has asked to me to add the following item.)

Advertising paid program or service: never allowed

Per the AoPS Terms of Service (rule 5h), general advertisements are not allowed.

While we do allow advertisements of official contests (at the MAA and MATHCOUNTS level) and those run by college students with at least one successful year, any and all advertisements of a paid service or program is not allowed and will be deleted.
0 replies
v_Enhance
Jun 12, 2020
0 replies
k i Stop looking for the "right" training
v_Enhance   50
N Oct 16, 2017 by blawho12
Source: Contest advice
EDIT 2019-02-01: https://blog.evanchen.cc/2019/01/31/math-contest-platitudes-v3/ is the updated version of this.

EDIT 2021-06-09: see also https://web.evanchen.cc/faq-contest.html.

Original 2013 post
50 replies
v_Enhance
Feb 15, 2013
blawho12
Oct 16, 2017
D1032 : A general result on polynomial 2
Dattier   0
10 minutes ago
Source: les dattes à Dattier
Let $P \in \mathbb Q[x,y]$ with $\max(\deg_x(P),\deg_y(P)) \leq d$ and $\forall (a,b) \in \mathbb Z^2 \cap [0,d]^2, P(a,b) \in \mathbb Z$.

Is it true that $\forall (a,b) \in\mathbb Z^2, P(a,b) \in \mathbb Z$?
0 replies
Dattier
10 minutes ago
0 replies
need advice
Levieee   0
13 minutes ago
Suppose you're working on a problem in a test and after 30 minutes, you realize that while you made good progress initially, you're now stuck and not getting anywhere. At that point, do you try a different method, continue pushing with the same approach, or just leave it and move on to the next problem? If you move on, doesn’t it feel like the 30 minutes spent were wasted—especially if you could have used that time to finish another problem more quickly? So when is the right time to pivot? And if you’ve already invested 30–40 minutes, should you keep going or abandon it, knowing that leaving it means that time might be wasted? Plus, while working on another problem, the thought that you need to return to the previous one keeps bothering you
0 replies
Levieee
13 minutes ago
0 replies
D1031 : A general result on polynomial 1
Dattier   0
16 minutes ago
Source: les dattes à Dattier
Let $P(x,y) \in \mathbb Q(x,y)$ with $\forall (a,b) \in \mathbb Z^2, P(a,b) \in \mathbb Z  $.

Is it true that $P(x,y) \in \mathbb Q[x,y]$?
0 replies
Dattier
16 minutes ago
0 replies
Another quadrilateral in a circle
v_Enhance   111
N 17 minutes ago by Ilikeminecraft
Source: APMO 2013, Problem 5
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of $AC$ such that $PB$ and $PD$ are tangent to $\omega$. The tangent at $C$ intersects $PD$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between $AQ$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.
111 replies
v_Enhance
May 3, 2013
Ilikeminecraft
17 minutes ago
camp/class recommendations for incoming freshman
walterboro   8
N Yesterday at 10:45 PM by lu1376091
hi guys, i'm about to be an incoming freshman, does anyone have recommendations for classes to take next year and camps this summer? i am sure that i can aime qual but not jmo qual yet. ty
8 replies
walterboro
May 10, 2025
lu1376091
Yesterday at 10:45 PM
Cyclic Quad
worthawholebean   130
N Yesterday at 9:53 PM by Mathandski
Source: USAMO 2008 Problem 2
Let $ ABC$ be an acute, scalene triangle, and let $ M$, $ N$, and $ P$ be the midpoints of $ \overline{BC}$, $ \overline{CA}$, and $ \overline{AB}$, respectively. Let the perpendicular bisectors of $ \overline{AB}$ and $ \overline{AC}$ intersect ray $ AM$ in points $ D$ and $ E$ respectively, and let lines $ BD$ and $ CE$ intersect in point $ F$, inside of triangle $ ABC$. Prove that points $ A$, $ N$, $ F$, and $ P$ all lie on one circle.
130 replies
worthawholebean
May 1, 2008
Mathandski
Yesterday at 9:53 PM
Circle in a Parallelogram
djmathman   55
N Yesterday at 5:47 PM by Ilikeminecraft
Source: 2022 AIME I #11
Let $ABCD$ be a parallelogram with $\angle BAD < 90^{\circ}$. A circle tangent to sides $\overline{DA}$, $\overline{AB}$, and $\overline{BC}$ intersects diagonal $\overline{AC}$ at points $P$ and $Q$ with $AP < AQ$, as shown. Suppose that $AP = 3$, $PQ = 9$, and $QC = 16$. Then the area of $ABCD$ can be expressed in the form $m\sqrt n$, where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

IMAGE
55 replies
djmathman
Feb 9, 2022
Ilikeminecraft
Yesterday at 5:47 PM
[Signups Now!] - Inaugural Academy Math Tournament
elements2015   1
N Yesterday at 5:16 PM by Ruegerbyrd
Hello!

Pace Academy, from Atlanta, Georgia, is thrilled to host our Inaugural Academy Math Tournament online through Saturday, May 31.

AOPS students are welcome to participate online, as teams or as individuals (results will be reported separately for AOPS and Georgia competitors). The difficulty of the competition ranges from early AMC to mid-late AIME, and is 2 hours long with multiple sections. The format is explained in more detail below. If you just want to sign up, here's the link:

https://forms.gle/ih548axqQ9qLz3pk7

If participating as a team, each competitor must sign up individually and coordinate team names!

Detailed information below:

Divisions & Teams
[list]
[*] Junior Varsity: Students in 10th grade or below who are enrolled in Algebra 2 or below.
[*] Varsity: All other students.
[*] Teams of up to four students compete together in the same division.
[list]
[*] (If you have two JV‑eligible and two Varsity‑eligible students, you may enter either two teams of two or one four‑student team in Varsity.)
[*] You may enter multiple teams from your school in either division.
[*] Teams need not compete at the same time. Each individual will complete the test alone, and team scores will be the sum of individual scores.
[/list]
[/list]
Competition Format
Both sections—Sprint and Challenge—will be administered consecutively in a single, individually completed 120-minute test. Students may allocate time between the sections however they wish to.

[list=1]
[*] Sprint Section
[list]
[*] 25 multiple‑choice questions (five choices each)
[*] recommended 2 minutes per question
[*] 6 points per correct answer; no penalty for guessing
[/list]

[*] Challenge Section
[list]
[*] 18 open‑ended questions
[*] answers are integers between 1 and 10,000
[*] recommended 3 or 4 minutes per question
[*] 8 points each
[/list]
[/list]
You may use blank scratch/graph paper, rulers, compasses, protractors, and erasers. No calculators are allowed on this examination.

Awards & Scoring
[list]
[*] There are no cash prizes.
[*] Team Awards: Based on the sum of individual scores (four‑student teams have the advantage). Top 8 teams in each division will be recognized.
[*] Individual Awards: Top 8 individuals in each division, determined by combined Sprint + Challenge scores, will receive recognition.
[/list]
How to Sign Up
Please have EACH STUDENT INDIVIDUALLY reserve a 120-minute window for your team's online test in THIS GOOGLE FORM:
https://forms.gle/ih548axqQ9qLz3pk7
EACH STUDENT MUST REPLY INDIVIDUALLY TO THE GOOGLE FORM.
You may select any slot from now through May 31, weekdays or weekends. You will receive an email with the questions and a form for answers at the time you receive the competition. There will be a 15-minute grace period for entering answers after the competition.
1 reply
elements2015
Monday at 8:13 PM
Ruegerbyrd
Yesterday at 5:16 PM
Circle Incident
MSTang   39
N Yesterday at 4:56 PM by Ilikeminecraft
Source: 2016 AIME I #15
Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.
39 replies
MSTang
Mar 4, 2016
Ilikeminecraft
Yesterday at 4:56 PM
Lots of Cyclic Quads
Vfire   104
N Yesterday at 5:53 AM by Ilikeminecraft
Source: 2018 USAMO #5
In convex cyclic quadrilateral $ABCD$, we know that lines $AC$ and $BD$ intersect at $E$, lines $AB$ and $CD$ intersect at $F$, and lines $BC$ and $DA$ intersect at $G$. Suppose that the circumcircle of $\triangle ABE$ intersects line $CB$ at $B$ and $P$, and the circumcircle of $\triangle ADE$ intersects line $CD$ at $D$ and $Q$, where $C,B,P,G$ and $C,Q,D,F$ are collinear in that order. Prove that if lines $FP$ and $GQ$ intersect at $M$, then $\angle MAC = 90^\circ$.

Proposed by Kada Williams
104 replies
Vfire
Apr 19, 2018
Ilikeminecraft
Yesterday at 5:53 AM
Evan's mean blackboard game
hwl0304   72
N Yesterday at 3:26 AM by HamstPan38825
Source: 2019 USAMO Problem 5, 2019 USAJMO Problem 6
Two rational numbers \(\tfrac{m}{n}\) and \(\tfrac{n}{m}\) are written on a blackboard, where \(m\) and \(n\) are relatively prime positive integers. At any point, Evan may pick two of the numbers \(x\) and \(y\) written on the board and write either their arithmetic mean \(\tfrac{x+y}{2}\) or their harmonic mean \(\tfrac{2xy}{x+y}\) on the board as well. Find all pairs \((m,n)\) such that Evan can write 1 on the board in finitely many steps.

Proposed by Yannick Yao
72 replies
hwl0304
Apr 18, 2019
HamstPan38825
Yesterday at 3:26 AM
Points Collinear iff Sum is Constant
djmathman   69
N Yesterday at 1:37 AM by blueprimes
Source: USAMO 2014, Problem 3
Prove that there exists an infinite set of points \[ \dots, \; P_{-3}, \; P_{-2},\; P_{-1},\; P_0,\; P_1,\; P_2,\; P_3,\; \dots \] in the plane with the following property: For any three distinct integers $a,b,$ and $c$, points $P_a$, $P_b$, and $P_c$ are collinear if and only if $a+b+c=2014$.
69 replies
djmathman
Apr 29, 2014
blueprimes
Yesterday at 1:37 AM
Jane street swag package? USA(J)MO
arfekete   30
N Yesterday at 12:32 AM by NoSignOfTheta
Hey! People are starting to get their swag packages from Jane Street for qualifying for USA(J)MO, and after some initial discussion on what we got, people are getting different things. Out of curiosity, I was wondering how they decide who gets what.
Please enter the following info:

- USAMO or USAJMO
- Grade
- Score
- Award/Medal/HM
- MOP (yes or no, if yes then color)
- List of items you got in your package

I will reply with my info as an example.
30 replies
arfekete
May 7, 2025
NoSignOfTheta
Yesterday at 12:32 AM
ranttttt
alcumusftwgrind   40
N Monday at 8:02 PM by ZMB038
rant
40 replies
alcumusftwgrind
Apr 30, 2025
ZMB038
Monday at 8:02 PM
Two permutations
Nima Ahmadi Pour   12
N Apr 23, 2025 by Zhaom
Source: Iran prepration exam
Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 + a_2 + \ldots + a_n$.
Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have
\[ n\mid a_i - b_i - c_i
\]

Proposed by Ricky Liu & Zuming Feng, USA
12 replies
Nima Ahmadi Pour
Apr 24, 2006
Zhaom
Apr 23, 2025
Two permutations
G H J
Source: Iran prepration exam
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nima Ahmadi Pour
160 posts
#1 • 2 Y
Y by Adventure10 and 1 other user
Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 + a_2 + \ldots + a_n$.
Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have
\[ n\mid a_i - b_i - c_i
\]

Proposed by Ricky Liu & Zuming Feng, USA
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ZetaX
7579 posts
#2 • 3 Y
Y by Adventure10, Mango247, and 1 other user
This problem and the following generalisation appeared 1979 in Ars Combinatoria (thanks to Darij who found it):

Let $ (G, + )$ be a finite abelian group of order $ n$.
Let also $ a_1,a_2,...,a_{n - 1} \in G$ be arbitrary.
Then there exist pairwise distinct $ b_1,b_2,...,b_{n - 1} \in G$ and pairwise distinct $ c_1,c_2,...,c_{n - 1} \in G$ such that $ a_k = b_k + c_k$ for $ k = 1,2,...,n - 1$.

[Moderator edit: The Ars Combinatoria paper is:
F. Salzborn, G. Szekeres, A problem in Combinatorial Group Theory, Ars Combinatoria 7 (1979), pp. 3-5.]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
epitomy01
240 posts
#3 • 3 Y
Y by Dan37kosothangnao, Adventure10, Mango247
so could someone post a proof of either the problem or its generalization?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
spdf
136 posts
#4 • 1 Y
Y by Adventure10
you can find the proof in file shortlist 2005 which has been posted by orl
The main idea is given two sequence $a_{1}...a_{n}$ and $b_{1}...b_{n}$ s.t $\sum a_{i}\equiv 0(mod n)$ and $\sum b_{i}\equiv 0(mod n)$ and there are exactly two i;j s.t $a_{i}\neq\ b_{i}(modn)$ and $a_{j}\neq\ b_{j}(modn)$.Then if we know two permutation good for the sequence (a_1...a_n) then we can build two permuttionm good for (b_1...b_n)
i will come back with detail if you need
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ZetaX
7579 posts
#5 • 1 Y
Y by Adventure10
Well, I will post the solution from Ars Combinatoria if a re-find that two sheets of paper...
It's a bit different from the ISL one.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
keira_khtn
485 posts
#6 • 2 Y
Y by Adventure10, Mango247
I think you didnt keep promise,Zetax :lol: Please post it here and now!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bodom
123 posts
#7 • 2 Y
Y by Adventure10, Mango247
to spdf: that was also my idea when i first saw the problem but i can't find a good way to contruct those 2 permutations for $ b_j$.you said you can post details.please do so :)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ZetaX
7579 posts
#8 • 2 Y
Y by Adventure10, Mango247
Sorry for not repsonding (I merely forgot...). But I just saw that problem again: In a slightly different manner (but being equivalent to this one here) it is solved in "The Mathematics of Juggling", called the "Converse of the Average Theorem".

Main ideas:
You show that this property (being a sum of two permutations) is invariant under the operations $ a_{i,j,d}$ that add $ d$ to $ a_i$ and subtract $ d$ from $ a_j$.
For this, you need to do it algorithmically (but describing it is a bit hard without that graphics...).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arandomperson123
430 posts
#9 • 2 Y
Y by Adventure10, Mango247
ZetaX wrote:
Sorry for not repsonding (I merely forgot...). But I just saw that problem again: In a slightly different manner (but being equivalent to this one here) it is solved in "The Mathematics of Juggling", called the "Converse of the Average Theorem".

Main ideas:
You show that this property (being a sum of two permutations) is invariant under the operations $ a_{i,j,d}$ that add $ d$ to $ a_i$ and subtract $ d$ from $ a_j$.
For this, you need to do it algorithmically (but describing it is a bit hard without that graphics...).

that is what I tried to do, but I can not prove that we can do it for the general case... can someone please help?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ThE-dArK-lOrD
4071 posts
#10 • 16 Y
Y by Lam.DL.01, Mosquitall, nmd27082001, Arc_archer, MathbugAOPS, iceillusion, Aryan-23, magicarrow, k12byda5h, gabrupro, Mop2018, Adventure10, Mango247, bhan2025, CyclicISLscelesTrapezoid, winniep008hfi
Since it's almost twelve years without complete solution, here's the official solution:

Suppose there exists permutations $\sigma$ and $\tau$ of $[n]$ for some sequence $\{ a_i\}_{i\in [n]}$ so that $a_i\equiv_n \sigma (i)+\tau (i)$ for all $i\in [n]$.
Given a sequence $\{ b_i\}_{i\in [n]}$ with sum divisible by $n$ that differ, in modulo $n$, from $\{ a_i\}_{i\in [n]}$ in only two positions, say $i_1$ and $i_2$.
We want to construct permutations $\sigma'$ and $\tau'$ of $[n]$ so that $b_i\equiv_n \sigma' (i) +\tau' (i)$ for all $i\in [n]$.
Recall that $b_i\equiv a_i\pmod{n}$ for all $i\in [n]$ that $i\neq i_1,i_2$.
Construct a sequence $i_1,i_2,i_3,...$ by, for each integer $k\geq 2$, define $i_{k+1}\in [n]$ to be the unique integer satisfy $\sigma (i_{k-1})+\tau (i_{k+1})\equiv_n b_{i_k}$.
Let (clearly exists) $p<q$ are the indices that $i_p=i_q$ with minimal $p$, and then minimal $q$.

If $p>2$. This means $i_j\not\in \{ i_1,i_2\} \implies \sigma (i_j) +\tau (i_j) \equiv_n b_{i_j}$ for all $j\in \{ p,p+1,...,q\}$.
Summing the equation $\sigma (i_{k-1})+\tau (i_{k+1})\equiv_n b_{i_k}$ for $k\in \{ p,p+1,...,q-1\}$ gives us
$$\sum_{j=p-1}^{q-2}{\sigma (i_j) } +\sum_{j=p+1}^{q}{\tau (i_j)} \equiv_n\sum_{j=p}^{q-1}{b_{i_j}} \implies \sigma (i_{p-1}) +\sigma (i_p) +\tau (i_{q-1}) +\tau (i_q) \equiv_nb_{i_p}+b_{i_{q-1}}.$$Plugging $i_p=i_q$ and use $\sigma (i_p) +\tau (i_p)\equiv_n b_{i_p}$ gives us $\sigma (i_{p-1}) +\tau (i_{q-1})\equiv_n b_{i_{q-1}} \equiv_n \sigma (i_{q-1})+\tau (i_{q-1})$.
Hence, $\sigma (i_{p-1}) \equiv_n \sigma (i_{q-1})\implies i_{p-1}=i_{q-1}$, contradiction to the definition of $p,q$.

So, we've $p\in \{ 1,2\}$. Let $p'=3-p$. Define the desired permutations $\sigma'$ and $\tau'$ as follows:
$$\sigma' (i_l)=\begin{cases} 
\sigma (i_{l-1}), & \text{ if } l\in \{ 2,3,...,q-1\} \\
\sigma (i_{q-1}), & \text{ if } l=1
\end{cases} ,\tau' (i_l)= \begin{cases} 
\tau (i_{l+1}), & \text{ if } l\in \{ 2,3,...,q-1\} \\
\tau (i_{p'}), & \text{ if } l=1
\end{cases}  $$and $\sigma' (i) =\sigma (i),\tau' (i)=\tau (i)$ for the rest $i\in [n]$ that $i\not\in \{ i_1,i_2,...,i_{q-1}\}$.
Note that the reason we choose $\tau (i_{p'})$ is just to not use $\tau (i_p)=\tau (i_{(q-1)+1})$ more than one time.
This construction gives us $\sigma' (i)+\tau' (i)\equiv_n b_i$ for all $i\in [n]$ except when $i=i_1$.
But since both $\sigma'$ and $\tau'$ are permutations of $[n]$, we've $\sum_{i\in [n]}{(\sigma' (i)+\tau' (i))} \equiv_n 2\times \frac{n(n-1)}{2}\equiv_n 0\equiv_n \sum_{i\in [n]}{b_i}$.
This guarantee that $\sigma' (i) +\tau' (i)\equiv_n b_i$ when $i=i_1$ too. This prove the validity of permutations we constructed.
This post has been edited 3 times. Last edited by ThE-dArK-lOrD, Jan 16, 2018, 3:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathleticguyyy
3217 posts
#11
Y by
The case with $n$ prime is also resolved in this paper
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Bataw
43 posts
#13
Y by
any other solutions ?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Zhaom
5124 posts
#16
Y by
:star_struck:

Plot $\left(b_k,c_k\right)$ for $k=1,2,\cdots,n$ on the coordinate plane with coordinates modulo $n$. We want to show that it is possible to choose the $n$ points plotted to have $\left\{b_1+c_1,b_2+c_2,\cdots,b_n+c_n\right\}$ be any multiset of $n$ elements $\pmod{n}$ such that sum of the elements is $0\pmod{n}$. Note that the $n$ points plotted can be any $n$ points not in the same row or column.

Instead, we will prove that we can choose $n-1$ points not in the same row or column such that the multiset $S$ of $x+y$ for all of the points $(x,y)$ can be any multiset of $n-1$ elements $\pmod{n}$. Then, we can choose the unique point not in the same row or column as the $n-1$ points to obtain $n$ points for the original statement, as the sum of the coordinates of all $n$ points is necessarily $2\cdot\left(0+1+\cdots+(n-1)\right)\equiv(n-1)n\equiv0\pmod{n}$.

We will construct the $n-1$ points in the following way.

We start with $n-1$ arbitrary points not in the same row or column. We will change the $n-1$ points in such a way that we can replace any element of $S$ by any residue $\pmod{n}$. Suppose we change the element in $S$ corresponding to a point $P$. Then, we will shift $P$ horizontally until the sum of the coordinates of $P$ is the desired value $\pmod{n}$. Now, we might have two points in the same column. We will repeatedly perform the following operation.

Note that there are exactly $n-1$ distinct rows taken up by the $n-1$ points. If the last point moved was $P$ and it is in the same column as $Q$, we will move $Q$ on the line through $Q$ with slope $-1$ until $Q$ occupies the previously empty row.

It suffices that this cannot last forever.

Claim. This operation is a reflection over a fixed line.

Proof. Suppose that this operation moves $P$ to a point $P'$, then on the next step it moves $Q$ to a point $Q'$. We see that $\overline{PP'}$ and $\overline{QQ'}$ both have slope $-1$. Now, note that $P'$ and $Q$ must be in the same row. Furthermore, after the operation moves $P$ to $P'$, the row containing $P$ must be empty, meaning that $Q$ must be moved to that row. This implies that $P$ and $Q'$ are in the same row. Therefore, we see that $PP'QQ'$ is a cyclic isosceles trapezoid and in particular the perpendicular bisectors of $\overline{PP'}$ and $\overline{QQ'}$ are the same, proving the claim.

Now, assume for the sake of contradiction that the operation lasts forever. We will label the $n-1$ points to distinguish them. Now, there are finitely many states of the $n-1$ points, so eventually the operation must loop through a cycle of states. In this cycle, start at an arbitrary state. Now, since at least $1$ point must be moved and then return back to its original position, consider the point $P$ which returns to its original position the earliest. When $P$ was moved, the next point $Q$ which was moved must have occupied the original row of $P$. However, if $P$ was moved back to its original position, then the original row of $P$ must be vacant, so $Q$ must have been moved. However, this implies that $Q$ was moved back to its original position before $P$ by the claim, a contradiction, so we are done.
Z K Y
N Quick Reply
G
H
=
a