Plan ahead for the next school year. Schedule your class today!

G
Topic
First Poster
Last Poster
k a July Highlights and 2025 AoPS Online Class Information
jwelsh   0
Jul 1, 2025
We are halfway through summer, so be sure to carve out some time to keep your skills sharp and explore challenging topics at AoPS Online and our AoPS Academies (including the Virtual Campus)!

[list][*]Over 60 summer classes are starting at the Virtual Campus on July 7th - check out the math and language arts options for middle through high school levels.
[*]At AoPS Online, we have accelerated sections where you can complete a course in half the time by meeting twice/week instead of once/week, starting on July 8th:
[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC Problem Series[/list]
[*]Plus, AoPS Online has a special seminar July 14 - 17 that is outside the standard fare: Paradoxes and Infinity
[*]We are expanding our in-person AoPS Academy locations - are you looking for a strong community of problem solvers, exemplary instruction, and math and language arts options? Look to see if we have a location near you and enroll in summer camps or academic year classes today! New locations include campuses in California, Georgia, New York, Illinois, and Oregon and more coming soon![/list]

MOP (Math Olympiad Summer Program) just ended and the IMO (International Mathematical Olympiad) is right around the corner! This year’s IMO will be held in Australia, July 10th - 20th. Congratulations to all the MOP students for reaching this incredible level and best of luck to all selected to represent their countries at this year’s IMO! Did you know that, in the last 10 years, 59 USA International Math Olympiad team members have medaled and have taken over 360 AoPS Online courses. Take advantage of our Worldwide Online Olympiad Training (WOOT) courses
and train with the best! Please note that early bird pricing ends August 19th!
Are you tired of the heat and thinking about Fall? You can plan your Fall schedule now with classes at either AoPS Online, AoPS Academy Virtual Campus, or one of our AoPS Academies around the US.

Our full course list for upcoming classes is below:
All classes start 7:30pm ET/4:30pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Sunday, Oct 19 - Jan 25
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Sat & Sun, Sep 13 - Sep 14 (1:00 - 4:00 PM PT/4:00 - 7:00 PM ET)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Wednesday, Sep 24 - Dec 17

Precalculus
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Calculus
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT


Programming

Introduction to Programming with Python
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26
0 replies
jwelsh
Jul 1, 2025
0 replies
in n^2-9 has 6 positive divisors than GCD (n-3, n+3)=1
parmenides51   9
N 5 minutes ago by megahertz13
Source: Greece JBMO TST 2016 p3
Positive integer $n$ is such that number $n^2-9$ has exactly $6$ positive divisors. Prove that GCD $(n-3, n+3)=1$
9 replies
parmenides51
Apr 29, 2019
megahertz13
5 minutes ago
two subsets with no fewer than four common elements.
micliva   43
N 8 minutes ago by mudkip42
Source: All-Russian Olympiad 1996, Grade 9, First Day, Problem 4
In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members.

A. Skopenkov
43 replies
1 viewing
micliva
Apr 18, 2013
mudkip42
8 minutes ago
Incenter and midpoint geom
sarjinius   95
N 8 minutes ago by Turkish_sniper
Source: 2024 IMO Problem 4
Let $ABC$ be a triangle with $AB < AC < BC$. Let the incenter and incircle of triangle $ABC$ be $I$ and $\omega$, respectively. Let $X$ be the point on line $BC$ different from $C$ such that the line through $X$ parallel to $AC$ is tangent to $\omega$. Similarly, let $Y$ be the point on line $BC$ different from $B$ such that the line through $Y$ parallel to $AB$ is tangent to $\omega$. Let $AI$ intersect the circumcircle of triangle $ABC$ at $P \ne A$. Let $K$ and $L$ be the midpoints of $AC$ and $AB$, respectively.
Prove that $\angle KIL + \angle YPX = 180^{\circ}$.

Proposed by Dominik Burek, Poland
95 replies
sarjinius
Jul 17, 2024
Turkish_sniper
8 minutes ago
Your average linear recurrence relation question
NamelyOrange   1
N 10 minutes ago by NamelyOrange
Source: 2022 National Taiwan University STEM Development Program Admissions Test, P4
For positive integer $n$, define $a_n = (3+\sqrt{10})^n+(3-\sqrt{10})^n$.

(a) The constants $A$ and $B$ satisfy $a_{n+1} = Aa_n+Ba_{n-1}$ for all positive integer $n$. Find the value of these constants.
(b) Prove with induction that $a_n$ is an integer for all positive integer $n$.
(c) Prove that $n$ and $\lfloor (3+\sqrt{10})^n\rfloor$ have opposite parities for all integer $n$.
1 reply
NamelyOrange
Today at 4:01 AM
NamelyOrange
10 minutes ago
No more topics!
NT with repeating decimal digits
oVlad   1
N Apr 21, 2025 by kokcio
Source: Romania EGMO TST 2019 Day 1 P2
Determine the digits $0\leqslant c\leqslant 9$ such that for any positive integer $k{}$ there exists a positive integer $n$ such that the last $k{}$ digits of $n^9$ are equal to $c{}.$
1 reply
oVlad
Apr 21, 2025
kokcio
Apr 21, 2025
NT with repeating decimal digits
G H J
G H BBookmark kLocked kLocked NReply
Source: Romania EGMO TST 2019 Day 1 P2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
oVlad
1746 posts
#1
Y by
Determine the digits $0\leqslant c\leqslant 9$ such that for any positive integer $k{}$ there exists a positive integer $n$ such that the last $k{}$ digits of $n^9$ are equal to $c{}.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kokcio
71 posts
#2
Y by
We cannot have $c=2,4,6,8$, because last four digits would have to be divisible by $16$, but in each of this cases numbers $2222, 4444, 6666, 8888$ are not. Similarly, we can see that $c=5$ leads to contradiction.
Now, assume that $c$ is coprime to $10$. We know that $9$ is coprime with $\phi(5^n)$ and $\phi(2^n)$ for all $n$, so function $f(x)=x^9$ is bijective on integers relatively prime to $10^n$ (we count modulo $10^n$). To see that this function is bijective, we can also see that $a^9\equiv b^9\mod 5^n$ iff $5^n$ divides $(a-b)(a^2+ab+b^2)(a^6+a^3b^3+b^6)$, but $5$ cannot divide neither $a^2+ab+b^2$, nor $a^6+a^3b^3+b^6$ if $ab$ is not divisible by $5$, so we would have to have $a\equiv b\mod5^n$. The same argument works modulo $2^n$. Therefore, we can have $c=1,3,7,9$. Obviously, we can also have $c=0$, so our answer is $c\in\{0,1,3,7,9\}$.
Z K Y
N Quick Reply
G
H
=
a