Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inequality with rational function
MathMystic33   3
N 11 minutes ago by ariopro1387
Source: Macedonian Mathematical Olympiad 2025 Problem 2
Let \( n > 2 \) be an integer, \( k > 1 \) a real number, and \( x_1, x_2, \ldots, x_n \) be positive real numbers such that \( x_1 \cdot x_2 \cdots x_n = 1 \). Prove that:

\[
\frac{1 + x_1^k}{1 + x_2} + \frac{1 + x_2^k}{1 + x_3} + \cdots + \frac{1 + x_n^k}{1 + x_1} \geq n.
\]
When does equality hold?
3 replies
1 viewing
MathMystic33
3 hours ago
ariopro1387
11 minutes ago
A cyclic weighted inequality
MathMystic33   2
N 27 minutes ago by grupyorum
Source: 2024 Macedonian Team Selection Test P2
Let $u,v,w$ be positive real numbers. Prove that there exists a cyclic permutation $(x,y,z)$ of $(u,v,w)$ such that for all positive real numbers $a,b,c$ the following holds:
\[
\frac{a}{x\,a + y\,b + z\,c}
\;+\;
\frac{b}{x\,b + y\,c + z\,a}
\;+\;
\frac{c}{x\,c + y\,a + z\,b}
\;\ge\;
\frac{3}{x + y + z}.
\]
2 replies
MathMystic33
an hour ago
grupyorum
27 minutes ago
Perfect squares imply GCD is a perfect square
MathMystic33   1
N 29 minutes ago by grupyorum
Source: 2024 Macedonian Team Selection Test P6
Let \(a,b\) be positive integers such that \(a+1\), \(b+1\), and \(ab\) are perfect squares. Prove that $\gcd(a,b)+1$ is also a perfect square.
1 reply
MathMystic33
an hour ago
grupyorum
29 minutes ago
Divisibility condition with primes
MathMystic33   1
N 31 minutes ago by grupyorum
Source: 2024 Macedonian Team Selection Test P1
Let \(p,p_2,\dots,p_k\) be distinct primes and let \(a_2,a_3,\dots,a_k\) be nonnegative integers. Define
\[
m \;=\;
\frac12
\Bigl(\prod_{i=2}^k p_i^{a_i}\Bigr)
\Bigl(\prod_{i=1}^k(p_i+1)\;+\;\sum_{i=1}^k(p_i-1)\Bigr),
\]\[
n \;=\;
\frac12
\Bigl(\prod_{i=2}^k p_i^{a_i}\Bigr)
\Bigl(\prod_{i=1}^k(p_i+1)\;-\;\sum_{i=1}^k(p_i-1)\Bigr).
\]Prove that
\[
p^2-1 \;\bigm|\; p\,m \;-\; n.
\]
1 reply
MathMystic33
an hour ago
grupyorum
31 minutes ago
Circumcircle of MUV tangent to two circles at once
MathMystic33   1
N 35 minutes ago by ariopro1387
Source: Macedonian Mathematical Olympiad 2025 Problem 1
Given is an acute triangle \( \triangle ABC \) with \( AB < AC \). Let \( M \) be the midpoint of side \( BC \), and let \( X \) and \( Y \) be points on segments \( BM \) and \( CM \), respectively, such that \( BX = CY \). Let \( \omega_1 \) be the circumcircle of \( \triangle ABX \), and \( \omega_2 \) the circumcircle of \( \triangle ACY \). The common tangent \( t \) to \( \omega_1 \) and \( \omega_2 \), which lies closer to point \( A \), touches \( \omega_1 \) and \( \omega_2 \) at points \( P \) and \( Q \), respectively. Let the line \( MP \) intersect \( \omega_1 \) again at \( U \), and the line \( MQ \) intersect \( \omega_2 \) again at \( V \). Prove that the circumcircle of triangle \( \triangle MUV \) is tangent to both \( \omega_1 \) and \( \omega_2 \).
1 reply
MathMystic33
3 hours ago
ariopro1387
35 minutes ago
Concurrency of tangent touchpoint lines on thales circles
MathMystic33   0
an hour ago
Source: 2024 Macedonian Team Selection Test P4
Let $\triangle ABC$ be an acute scalene triangle. Denote by $k_A$ the circle with diameter $BC$, and let $B_A,C_A$ be the contact points of the tangents from $A$ to $k_A$, chosen so that $B$ and $B_A$ lie on opposite sides of $AC$ and $C$ and $C_A$ lie on opposite sides of $AB$. Similarly, let $k_B$ be the circle with diameter $CA$, with tangents from $B$ touching at $C_B,A_B$, and $k_C$ the circle with diameter $AB$, with tangents from $C$ touching at $A_C,B_C$.
Prove that the lines $B_AC_A, C_BA_B, A_CB_C$ are concurrent.
0 replies
MathMystic33
an hour ago
0 replies
Equal areas of the triangles on the parabola
NO_SQUARES   0
an hour ago
Source: Regional Stage of ARO 2025 10.10; also Kvant 2025 no. 3 M2837
On the graphic of the function $y=x^2$ were selected $1000$ pairwise distinct points, abscissas of which are integer numbers from the segment $[0; 100000]$. Prove that it is possible to choose six different selected points $A$, $B$, $C$, $A'$, $B'$, $C'$ such that areas of triangles $ABC$ and $A'B'C'$ are equals.
A. Tereshin
0 replies
NO_SQUARES
an hour ago
0 replies
Concurrency from symmetric points on the sides of a triangle
MathMystic33   0
an hour ago
Source: 2024 Macedonian Team Selection Test P3
Let $\triangle ABC$ be a triangle. On side $AB$ take points $K$ and $L$ such that $AK \;=\; LB \;<\;\tfrac12\,AB,$
on side $BC$ take points $M$ and $N$ such that $BM \;=\; NC \;<\;\tfrac12\,BC,$ and on side $CA$ take points $P$ and $Q$ such that $CP \;=\; QA \;<\;\tfrac12\,CA.$ Let $R \;=\; KN\;\cap\;MQ,
\quad
T \;=\; KN \cap LP, $ and $ D \;=\; NP \cap LM, \quad
E \;=\; NP \cap KQ.$
Prove that the lines $DR, BE, CT$ are concurrent.
0 replies
MathMystic33
an hour ago
0 replies
Grouping angles in a pentagon with bisectors
Assassino9931   2
N an hour ago by Assassino9931
Source: Al-Khwarizmi International Junior Olympiad 2025 P2
Let $ABCD$ be a convex quadrilateral with \[\angle ADC = 90^\circ, \ \ \angle BCD = \angle ABC > 90^\circ, \mbox{ and } AB = 2CD.\]The line through \(C\), parallel to \(AD\), intersects the external angle bisector of \(\angle ABC\) at point \(T\). Prove that the angles $\angle ATB$, $\angle TBC$, $\angle BCD$, $\angle CDA$, $\angle DAT$ can be divided into two groups, so that the angles in each group have a sum of $270^{\circ}$.

Miroslav Marinov, Bulgaria
2 replies
Assassino9931
May 9, 2025
Assassino9931
an hour ago
Geometric inequality with 2 orthocenters and midpoint of the side
NO_SQUARES   0
an hour ago
Source: Regional Stage of ARO 2025 10.5; also Kvant 2025 no. 3 M2836
The heights $BD$ and $CE$ of the acute-angled triangle $ABC$ intersect at point $H$, the heights of the triangle $ADE$ intersect at point $F$, point $M$ is the midpoint of side $BC$. Prove that $BH + CH \geqslant 2 FM$.
A. Kuznetsov
0 replies
NO_SQUARES
an hour ago
0 replies
Taking antipode on isosceles triangle's circumcenter
Nuran2010   1
N an hour ago by Sadigly
Source: Azerbaijan Al-Khwarizmi IJMO TST 2025
In isosceles triangle, the condition $AB=AC>BC$ is satisfied. Point $D$ is taken on the circumcircle of $ABC$ such that $\angle CAD=90^{\circ}$.A line parallel to $AC$ which passes from $D$ intersects $AB$ and $BC$ respectively at $E$ and $F$.Show that circumcircle of $ADE$ passes from circumcenter of $DFC$.
1 reply
Nuran2010
May 11, 2025
Sadigly
an hour ago
Proving ZA=ZB
nAalniaOMliO   7
N 2 hours ago by nAalniaOMliO
Source: Belarusian National Olympiad 2025
Point $H$ is the foot of the altitude from $A$ of triangle $ABC$. On the lines $AB$ and $AC$ points $X$ and $Y$ are marked such that the circumcircles of triangles $BXH$ and $CYH$ are tangent, call this circles $w_B$ and $w_C$ respectively. Tangent lines to circles $w_B$ and $w_C$ at $X$ and $Y$ intersect at $Z$.
Prove that $ZA=ZH$.
Vadzim Kamianetski
7 replies
nAalniaOMliO
Mar 28, 2025
nAalniaOMliO
2 hours ago
Tangents involving a centroid with an isosceles triangle result
pithon_with_an_i   2
N 2 hours ago by Funcshun840
Source: Revenge JOM 2025 Problem 5, Revenge JOMSL 2025 G5, Own
A triangle $ABC$ has centroid $G$. A line parallel to $BC$ passing through $G$ intersects the circumcircle of $ABC$ at a point $D$. Let lines $AD$ and $BC$ intersect at $E$. Suppose a point $P$ is chosen on $BC$ such that the tangent of the circumcircle of $DEP$ at $D$, the tangent of the circumcircle of $ABC$ at $A$ and $BC$ concur. Prove that $GP = PD$.

Remark 1
Remark 2
2 replies
pithon_with_an_i
5 hours ago
Funcshun840
2 hours ago
orthocenter on sus circle
DVDTSB   1
N 2 hours ago by Double07
Source: Romania TST 2025 Day 2 P1
Let \( ABC \) be an acute triangle with \( AB < AC \), and let \( O \) be the center of its circumcircle. Let \( A' \) be the reflection of \( A \) with respect to \( BC \). The line through \( O \) parallel to \( BC \) intersects \( AC \) at \( F \), and the tangent at \( F \) to the circle \( \odot(BFC) \) intersects the line through \( A' \) parallel to \( BC \) at point \( M \). Let \( K \) be a point on the ray \( AB \), starting at \( A \), such that \( AK = 4AB \).
Show that the orthocenter of triangle \( ABC \) lies on the circle with diameter \( KM \).

Proposed by Radu Lecoiu

1 reply
DVDTSB
Today at 12:18 PM
Double07
2 hours ago
Projections on collections of lines
Assassino9931   1
N Apr 28, 2025 by awesomeming327.
Source: Balkan MO Shortlist 2024 C6
Let $\mathcal{D}$ be the set of all lines in the plane and $A$ be a set of $17$ points in the plane. For a line $d\in \mathcal{D}$ let $n_d(A)$ be the number of distinct points among the orthogonal projections of the points from $A$ on $d$. Find the maximum possible number of distinct values of $n_d(A)$ (this quantity is computed for any line $d$) as $A$ varies.
1 reply
Assassino9931
Apr 27, 2025
awesomeming327.
Apr 28, 2025
Projections on collections of lines
G H J
Source: Balkan MO Shortlist 2024 C6
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1351 posts
#1
Y by
Let $\mathcal{D}$ be the set of all lines in the plane and $A$ be a set of $17$ points in the plane. For a line $d\in \mathcal{D}$ let $n_d(A)$ be the number of distinct points among the orthogonal projections of the points from $A$ on $d$. Find the maximum possible number of distinct values of $n_d(A)$ (this quantity is computed for any line $d$) as $A$ varies.
This post has been edited 1 time. Last edited by Assassino9931, Apr 27, 2025, 10:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1719 posts
#2 • 3 Y
Y by centslordm, Assassino9931, Redference
I think the answer is $13$. Here is a construction with a few examples:

4
5
6
7
9

$10$ to $17$ are all possible by taking some slopes.

Suppose $14$ is possible. Then either $4$ to $17$ are all possible, or $3$ is possible. If $3$ is possible and $5$ is possible then all the points lie inside some $3\times 5$ affine box, which is less than $17$. So if $3$ is possible, then $6$ is the next smallest, which means that there cannot be more than $13$. If $4$ to $17$ are all possible we can take the $4\times 5$ affine box that contains all the points and transform it into a regular array. Then note that the best possible slopes are $-1$ and $1$ and if we want $6$ and $7$ to be possible, the points must be in the form of the construction, and then that leaves no room for $8$ to be possible.
This post has been edited 1 time. Last edited by awesomeming327., Apr 28, 2025, 12:03 AM
Z K Y
N Quick Reply
G
H
=
a