Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Ah, easy one
irregular22104   2
N 7 minutes ago by irregular22104
Source: Own
In the number series $1,9,9,9,8,...,$ every next number (from the fifth number) is the unit number of the sum of the four numbers preceding it. Is there any cases that we get the numbers $1234$ and $5678$ in this series?
2 replies
irregular22104
Wednesday at 4:01 PM
irregular22104
7 minutes ago
power of a point
BekzodMarupov   1
N 9 minutes ago by nabodorbuco2
Source: lemmas in olympiad geometry
Epsilon 1.3. Let ABC be a triangle and let D, E, F be the feet of the altitudes, with D on BC, E on CA, and F on AB. Let the parallel through D to EF meet AB at X and AC at Y. Let T be the intersection of EF with BC and let M be the midpoint of side BC. Prove that the points T, M, X, Y are concyclic.
1 reply
BekzodMarupov
6 hours ago
nabodorbuco2
9 minutes ago
Prove that the triangle is isosceles.
TUAN2k8   1
N 23 minutes ago by JARP091
Source: My book
Given acute triangle $ABC$ with two altitudes $CF$ and $BE$.Let $D$ be the point on the line $CF$ such that $DB \perp BC$.The lines $AD$ and $EF$ intersect at point $X$, and $Y$ is the point on segment $BX$ such that $CY \perp BY$.Suppose that $CF$ bisects $BE$.Prove that triangle $ACY$ is isosceles.
1 reply
TUAN2k8
an hour ago
JARP091
23 minutes ago
Functional Equation!
EthanWYX2009   5
N 29 minutes ago by Miquel-point
Source: 2025 TST 24
Find all functions $f:\mathbb Z\to\mathbb Z$ such that $f$ is unbounded and
\[2f(m)f(n)-f(n-m)-1\]is a perfect square for all integer $m,n.$
5 replies
EthanWYX2009
Mar 29, 2025
Miquel-point
29 minutes ago
IMO Shortlist 2014 G3
hajimbrak   46
N 30 minutes ago by Rayvhs
Let $\Omega$ and $O$ be the circumcircle and the circumcentre of an acute-angled triangle $ABC$ with $AB > BC$. The angle bisector of $\angle ABC$ intersects $\Omega$ at $M \ne B$. Let $\Gamma$ be the circle with diameter $BM$. The angle bisectors of $\angle AOB$ and $\angle BOC$ intersect $\Gamma$ at points $P$ and $Q,$ respectively. The point $R$ is chosen on the line $P Q$ so that $BR = MR$. Prove that $BR\parallel AC$.
(Here we always assume that an angle bisector is a ray.)

Proposed by Sergey Berlov, Russia
46 replies
hajimbrak
Jul 11, 2015
Rayvhs
30 minutes ago
Eight-point cicle
sandu2508   15
N 42 minutes ago by Mamadi
Source: Balkan MO 2010, Problem 2
Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$.
Prove that $M_1$ lies on the segment $BH_1$.
15 replies
sandu2508
May 4, 2010
Mamadi
42 minutes ago
IMO Solution mistake
CHESSR1DER   1
N an hour ago by whwlqkd
Source: Mistake in IMO 1982/1 4th solution
I found a mistake in 4th solution at IMO 1982/1. It gives answer $660$ and $661$. But right answer is only $660$. Should it be reported somewhere in Aops?
1 reply
CHESSR1DER
4 hours ago
whwlqkd
an hour ago
Hard geometry
Lukariman   8
N an hour ago by Lukariman
Given circle (O) and chord AB with different diameters. The tangents of circle (O) at A and B intersect at point P. On the small arc AB, take point C so that triangle CAB is not isosceles. The lines CA and BP intersect at D, BC and AP intersect at E. Prove that the centers of the circles circumscribing triangles ACE, BCD and OPC are collinear.
8 replies
Lukariman
May 14, 2025
Lukariman
an hour ago
inequality
mathematical-forest   2
N an hour ago by mathematical-forest
For positive real intengers $x_{1} ,x_{2} ,\cdots,x_{n} $, such that $\prod_{i=1}^{n} x_{i} =1$
proof:
$$\sum_{i=1}^{n} \frac{1}{1+\sum _{j\ne i}x_{j}  } \le 1$$
2 replies
mathematical-forest
Yesterday at 12:40 PM
mathematical-forest
an hour ago
4-vars inequality
xytunghoanh   4
N an hour ago by JARP091
For $a,b,c,d \ge 0$ and $a\ge c$, $b \ge d$. Prove that
$$a+b+c+d+ac+bd+8 \ge 2(\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}+\sqrt{ac}+\sqrt{bd})$$.
4 replies
xytunghoanh
Yesterday at 2:10 PM
JARP091
an hour ago
Sneaky one
Sunjee   2
N 2 hours ago by Sunjee
Find minimum and maximum value of following function.
$$f(x,y)=\frac{\sqrt{x^2+y^2}+\sqrt{(x-2)^2+(y-1)^2}}{\sqrt{x^2+(y-1)^2}+\sqrt{(x-2)^2+y^2}} $$
2 replies
Sunjee
2 hours ago
Sunjee
2 hours ago
Simple but hard
Lukariman   2
N 2 hours ago by Lukariman
Given triangle ABC. Outside the triangle, construct rectangles ACDE and BCFG with equal areas. Let M be the midpoint of DF. Prove that CM passes through the center of the circle circumscribing triangle ABC.
2 replies
Lukariman
Today at 2:47 AM
Lukariman
2 hours ago
D1033 : A problem of probability for dominoes 3*1
Dattier   1
N 2 hours ago by Dattier
Source: les dattes à Dattier
Let $G$ a grid of 9*9, we choose a little square in $G$ of this grid three times, we can choose three times the same.

What the probability of cover with 3*1 dominoes this grid removed by theses little squares (one, two or three) ?
1 reply
Dattier
Yesterday at 12:29 PM
Dattier
2 hours ago
Please I need help
yaybanana   2
N 2 hours ago by yaybanana
Source: Samin Riasat Handout
Please can someone help me, I'm bad at inequalities and I have no clue on how to solve this :

Let $a,b,c$ be positive reals, s.t $a+b+c=1$, prove that :

$\frac{a}{\sqrt{a+2b}}+\frac{b}{\sqrt{b+2c}}+\frac{c}{\sqrt{c+2a}}<\sqrt{\frac{3}{2}}$
2 replies
yaybanana
3 hours ago
yaybanana
2 hours ago
Projections on collections of lines
Assassino9931   1
N Apr 28, 2025 by awesomeming327.
Source: Balkan MO Shortlist 2024 C6
Let $\mathcal{D}$ be the set of all lines in the plane and $A$ be a set of $17$ points in the plane. For a line $d\in \mathcal{D}$ let $n_d(A)$ be the number of distinct points among the orthogonal projections of the points from $A$ on $d$. Find the maximum possible number of distinct values of $n_d(A)$ (this quantity is computed for any line $d$) as $A$ varies.
1 reply
Assassino9931
Apr 27, 2025
awesomeming327.
Apr 28, 2025
Projections on collections of lines
G H J
Source: Balkan MO Shortlist 2024 C6
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1354 posts
#1
Y by
Let $\mathcal{D}$ be the set of all lines in the plane and $A$ be a set of $17$ points in the plane. For a line $d\in \mathcal{D}$ let $n_d(A)$ be the number of distinct points among the orthogonal projections of the points from $A$ on $d$. Find the maximum possible number of distinct values of $n_d(A)$ (this quantity is computed for any line $d$) as $A$ varies.
This post has been edited 1 time. Last edited by Assassino9931, Apr 27, 2025, 10:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1720 posts
#2 • 3 Y
Y by centslordm, Assassino9931, Redference
I think the answer is $13$. Here is a construction with a few examples:

4
5
6
7
9

$10$ to $17$ are all possible by taking some slopes.

Suppose $14$ is possible. Then either $4$ to $17$ are all possible, or $3$ is possible. If $3$ is possible and $5$ is possible then all the points lie inside some $3\times 5$ affine box, which is less than $17$. So if $3$ is possible, then $6$ is the next smallest, which means that there cannot be more than $13$. If $4$ to $17$ are all possible we can take the $4\times 5$ affine box that contains all the points and transform it into a regular array. Then note that the best possible slopes are $-1$ and $1$ and if we want $6$ and $7$ to be possible, the points must be in the form of the construction, and then that leaves no room for $8$ to be possible.
This post has been edited 1 time. Last edited by awesomeming327., Apr 28, 2025, 12:03 AM
Z K Y
N Quick Reply
G
H
=
a