Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Isogonal Conjugates of Nagel and Gergonne Point
SerdarBozdag   6
N 41 minutes ago by ohiorizzler1434
Source: http://math.fau.edu/yiu/Oldwebsites/Geometry2013Fall/Geometry2013Chapter12.pdf
Proposition 12.1.
(a) The isogonal conjugate of the Gergonne point is the insimilicenter of
the circumcircle and the incircle.
(b) The isogonal conjugate of the Nagel point is the exsimilicenter of the circumcircle and
the incircle.
Note: I need synthetic solution.
6 replies
SerdarBozdag
Apr 17, 2021
ohiorizzler1434
41 minutes ago
Looking for someone to work with
midacer   1
N an hour ago by wipid98
I’m looking for a motivated study partner (or small group) to collaborate on college-level competition math problems, particularly from contests like the Putnam, IMO Shortlist, IMC, and similar. My goal is to improve problem-solving skills, explore advanced topics (e.g., combinatorics, NT, analysis), and prepare for upcoming competitions. I’m new to contests but have a strong general math background(CPGE in Morocco). If interested, reply here or DM me to discuss
1 reply
midacer
2 hours ago
wipid98
an hour ago
USAMO 1983 Problem 2 - Roots of Quintic
Binomial-theorem   33
N 2 hours ago by SomeonecoolLovesMaths
Source: USAMO 1983 Problem 2
Prove that the roots of\[x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0\] cannot all be real if $2a^2 < 5b$.
33 replies
Binomial-theorem
Aug 16, 2011
SomeonecoolLovesMaths
2 hours ago
Compact powers of 2
NO_SQUARES   1
N 3 hours ago by Isolemma
Source: 239 MO 2025 8-9 p3 = 10-11 p2
Let's call a power of two compact if it can be represented as the sum of no more than $10^9$ not necessarily distinct factorials of positive integer numbers. Prove that the set of compact powers of two is finite.
1 reply
NO_SQUARES
May 5, 2025
Isolemma
3 hours ago
Cute NT Problem
M11100111001Y1R   4
N 3 hours ago by RANDOM__USER
Source: Iran TST 2025 Test 4 Problem 1
A number \( n \) is called lucky if it has at least two distinct prime divisors and can be written in the form:
\[
n = p_1^{\alpha_1} + \cdots + p_k^{\alpha_k}
\]where \( p_1, \dots, p_k \) are distinct prime numbers that divide \( n \). (Note: it is possible that \( n \) has other prime divisors not among \( p_1, \dots, p_k \).) Prove that for every prime number \( p \), there exists a lucky number \( n \) such that \( p \mid n \).
4 replies
M11100111001Y1R
Today at 7:20 AM
RANDOM__USER
3 hours ago
USAMO 2003 Problem 4
MithsApprentice   72
N 3 hours ago by endless_abyss
Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.
72 replies
MithsApprentice
Sep 27, 2005
endless_abyss
3 hours ago
Easy but unusual junior ineq
Maths_VC   1
N 3 hours ago by blug
Source: Serbia JBMO TST 2025, Problem 2
Real numbers $x, y$ $\ge$ $0$ satisfy $1$ $\le$ $x^2 + y^2$ $\le$ $5$. Determine the minimal and the maximal value of the expression $2x + y$
1 reply
Maths_VC
4 hours ago
blug
3 hours ago
Bosnia and Herzegovina JBMO TST 2009 Problem 1
gobathegreat   1
N 3 hours ago by FishkoBiH
Source: Bosnia and Herzegovina Junior Balkan Mathematical Olympiad TST 2009
Lengths of sides of triangle $ABC$ are positive integers, and smallest side is equal to $2$. Determine the area of triangle $P$ if $v_c = v_a + v_b$, where $v_a$, $v_b$ and $v_c$ are lengths of altitudes in triangle $ABC$ from vertices $A$, $B$ and $C$, respectively.
1 reply
gobathegreat
Sep 17, 2018
FishkoBiH
3 hours ago
USAMO 2001 Problem 2
MithsApprentice   53
N 3 hours ago by lksb
Let $ABC$ be a triangle and let $\omega$ be its incircle. Denote by $D_1$ and $E_1$ the points where $\omega$ is tangent to sides $BC$ and $AC$, respectively. Denote by $D_2$ and $E_2$ the points on sides $BC$ and $AC$, respectively, such that $CD_2=BD_1$ and $CE_2=AE_1$, and denote by $P$ the point of intersection of segments $AD_2$ and $BE_2$. Circle $\omega$ intersects segment $AD_2$ at two points, the closer of which to the vertex $A$ is denoted by $Q$. Prove that $AQ=D_2P$.
53 replies
MithsApprentice
Sep 30, 2005
lksb
3 hours ago
A=b
k2c901_1   89
N 3 hours ago by reni_wee
Source: Taiwan 1st TST 2006, 1st day, problem 3
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.

Proposed by Mohsen Jamali, Iran
89 replies
k2c901_1
Mar 29, 2006
reni_wee
3 hours ago
a