Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
No topics here!
Inequalities
sqing   59
N Dec 22, 2024 by sqing
Let $a,b>0$ and $ab^2(a+b)=9.$ Prove that
$$2a+5b\geq 2\sqrt[4]{27(3+8\sqrt{6})} $$$$2a+9b\geq 6\sqrt[4]{48\sqrt{2}-39} $$
59 replies
sqing
Oct 31, 2024
sqing
Dec 22, 2024
Inequalities
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#46
Y by
Very very nice .Thank ytChen .
Let $ a,b,c,d $ be reals such that $a^2+b^2+c^2+d^2=1.$ Prove that
$$(a+b+c )d\leq \frac{\sqrt 3}{2}$$Let $ a,b,c,d > 0 $ and $a^3+b^3+c^3+d^3=1.$ Prove that
$$(a^2+b^2+c^2)d \leq \sqrt[3]{\frac{4}{9}}$$Let $ a,b,c  $ be reals . Prove that
$$\frac{a+b}{(16a^4+7)(16b^4+7)}  \leq \frac{1}{64}$$$$\frac{a+b+c}{(9 a^2+5)(9 b^2+5)(9c^2+5)}  \leq \frac{1}{216}$$Let $ a,b,c > 0 .$ Prove that
$$\frac{a+b}{(8a^3 +5)(8b^3+5)}  \leq \frac{1}{36}$$$$\frac{a+b}{(32a^5+9)(32b^5+9)}  \leq \frac{1}{100}$$$$\frac{a+b+c}{(27a^3+8)(27 b^3+8)(27c^3+8)}  \leq \frac{1}{729}$$Let $ a,b,c,d  $ be reals . Prove that
$$\frac{a+b+c+d}{(16a^2+7)(16b^2+7)(16c^2+7)(16d^2+7)}  \leq \frac{1}{4096}$$
This post has been edited 3 times. Last edited by sqing, Feb 26, 2025, 8:40 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ytChen
1092 posts
#47
Y by
sqing wrote:
Let $a,b,c >0 .$ Prove that $$ \frac{a^3}{b^3+1}+ \frac{b^3}{c^3+1}+ \frac{c^3}{a^3+1}\geq \frac{3abc}{abc+1}$$
Solution. First recall inequality $$(x+y+z)^2\ge3(xy+yz+zy).$$Thus, by Cauchy-Schwartz’s inequality, we get
\begin{align*}& \frac{a^3}{b^3+1}+ \frac{b^3}{c^3+1}+ \frac{c^3}{a^3+1}=\\
& \frac{a^6}{a^3\left(b^3+1\right)}+ \frac{b^6}{b^3\left(c^3+1\right)}+ \frac{c^6}{c^3\left(a^3+1\right)}\\
\ge& \frac{\left(a^3+b^3+c^3\right)^2}{a^3b^3+b^3c^3+c^3a^3+ a^3+b^3+c^3}\\
=& \frac{1}{\frac{a^3b^3+b^3c^3+ c^3a^3}{\left(a^3+b^3+c^3\right)^2 }+\frac{1}{a^3+b^3+c^3}}\\
\ge&\frac{1}{\frac{1}{3}+\frac{1}{3abc}}=\frac{3abc}{abc+1},
\end{align*}and the equality occurs if $a=b=c=1$. $\blacksquare$
This post has been edited 2 times. Last edited by ytChen, Nov 20, 2024, 11:52 PM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#48
Y by
Very very nice .Thank ytChen .
Let $ a,b,c\ge 0 $ and $   ab+bc+ca+abc=4 $.Prove that
$$(a+b+c-4)^2+4 \ge 5abc $$Equality holds when $(a,b,c)=\left(\frac{2}{3}, \frac{2}{3},2\right).$
This post has been edited 1 time. Last edited by sqing, Nov 21, 2024, 11:24 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ytChen
1092 posts
#49
Y by
sqing wrote:
Let $a,b,c >0 .$ Prove that
$$ \frac{ab}{(a+b)^2+c^2}+\frac{bc}{(b+c)^2+a^2}+ \frac{ca}{(c+a)^2+b^2} \leq \frac{3}{5}$$

Solution.Cauchy-Schwartz’s inequality shows
\begin{align*}& \frac{ab}{(a+b)^2+c^2}+\frac{bc}{(b+c)^2+a^2}+ \frac{ca}{(c+a)^2+b^2}\\
\le& \frac{ab}{4ab+c^2}+\frac{bc}{4bc+a^2}+ \frac{ca}{4ca+b^2}\\
=& \frac{1}{4}\left[3-\frac{c^2}{4ab+c^2}-\frac{a^2}{4bc+a^2}- \frac{b^2}{4ca+b^2}\right]\\
\le& \frac{1}{4}\left[3-\frac{(a+b+c)^2}{(a+b+c)^2+2(ab+bc+ac)}\right]\\
=& \frac{1}{4}\left[3-\frac{1}{1+\frac{2(ab+bc+ca)}{(a+b+c)^2}}\right]\le \frac{1}{4}\left[3-\frac{1}{1+\frac{2}{3}}\right] =\frac{3}{5},
\end{align*}and the maximum value $\frac{3}{5} $ can be attained if $a=b=c$. $\blacksquare$
This post has been edited 2 times. Last edited by ytChen, Nov 21, 2024, 1:49 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#50
Y by
Very very nice .Thank ytChen .
Let $ a,b,c>0. $ Prove that
$$\frac{\frac{a^2}{b+c}}{\frac{b}{c+a}+\frac{c}{a+b}}+\frac{\frac{b^2}{c+a}}{\frac{c}{a+b}+\frac{a}{b+c}} +\frac{\frac{c^2}{a+b}}{\frac{a}{b+c}+\frac{b}{c+a}} \geq\frac{a+b+c}{2}  $$$$\frac{1}{\frac{a}{a+b}+\frac{b}{b+c}} +\frac{1}{\frac{b}{b+c}+\frac{c}{c+a}} +\frac{1}{\frac{c}{c+a}+\frac{a}{a+b}} >\frac{5}{2}  $$$$\frac{(a^2+bc)(b^2+ca)(c^2+ab)}{abc}\geq  \frac{1}{2}(a+b+c)^3$$Let $ a,b \in [0,1] .$ Prove that
$$\frac{1}{1+a+b+c+abc}\geq  1-\frac{a+b+c}{3}+\frac{abc}{5}  \geq \frac{1}{2+ab+bc+ca}$$Let $ a,b,c\geq 0,a+b+c=4 $ and $a^2+b^2+c^2=10 . $ Prove that$$a^3b+b^3c+c^3a+8abc\leq 27$$Let $ a,b,c>0 $ and $a+b+c=3 . $ Prove that
$$\frac{a+b}{c+a+1}+\frac{b+c}{a+b+1}+\frac{c+a}{b+c+1} \geq 2 \geq  \frac{a(b+c)}{a+b+1}+\frac{b(c+a)}{b+c+1}+\frac{c(a+b)}{c+a+1}  $$Let $ a,b,c>0 $ and $abc=1 . $ Prove that
$$\frac{a+b}{c+a+1}+\frac{b+c}{a+b+1}+\frac{c+a}{b+c+1} \geq 2$$Let $ a,b,c>0 $ and $a^2+b^2+c^2=3 . $ Prove that
$$    \frac{a(b+c)}{a+b+1}+\frac{b(c+a)}{b+c+1}+\frac{c(a+b)}{c+a+1} \leq 2 $$
Attachments:
This post has been edited 5 times. Last edited by sqing, Mar 1, 2025, 2:53 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#51
Y by
Let $ a,b,c\geq 0 .$ Prove that$$ \frac{a}{b+c}+ \frac{b }{c+a}+ \frac{ c+\sqrt{ab} }{a+b}\geq 2$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ytChen
1092 posts
#52
Y by
sqing wrote:
Let $ a,b,c\geq 0 .$ Prove that$$ \frac{a}{b+c}+ \frac{b }{c+a}+ \frac{ c+\sqrt{ab} }{a+b}\geq 2$$
Solution. Without loss of generality, assume $a\ge b\ge0$. For $\frac{a+b }{c+\sqrt{ab}}+ \frac{ c+\sqrt{ab} }{a+b}\ge2$, it suffices to show
$$\frac{a}{b+c}+ \frac{b }{c+a}-\frac{a+b}{c+\sqrt{ab} }\ge0.$$Indeed,
\begin{align*}& \frac{a}{b+c}+ \frac{b }{c+a}-\frac{a+b}{c+\sqrt{ab} }\\
=& \frac{a}{b+c}-\frac{a}{c+\sqrt{ab} } + \frac{b }{c+a}-\frac{b}{c+\sqrt{ab} }\\
=& \frac{a\sqrt b\left(\sqrt a-\sqrt b\right)}{(b+c)\left(c+\sqrt{ab}\right)}+ \frac{b\sqrt a\left(\sqrt b-\sqrt a\right)}{(c+a)\left(c+\sqrt{ab}\right)}\\
\ge& \frac{a\sqrt b\left(\sqrt a-\sqrt b\right)}{(a+c)\left(c+\sqrt{ab}\right)}+ \frac{b\sqrt a\left(\sqrt b-\sqrt a\right)}{(c+a)\left(c+\sqrt{ab}\right)}\\
=& \frac{\sqrt{ab}\left(\sqrt a-\sqrt b\right)^2}{(a+c)\left(c+\sqrt{ab}\right)}\ge0,
\end{align*}and the equality occurs if $b=0$ and $a=c$. $\blacksquare$
This post has been edited 2 times. Last edited by ytChen, Nov 21, 2024, 7:48 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#53
Y by
Very very nice.Thank ytChen:
Let $ a,b,c > 0 .$ Then$$\frac{a}{b+c}+ \frac{b }{a+c} \geq\frac{a+b}{\sqrt{ab}+c}$$h
This post has been edited 3 times. Last edited by sqing, Nov 21, 2024, 8:22 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#54
Y by
Let $ a,b > 0 .$ Prove that $$\frac{a^2}{b+1}+ \frac{b^2 }{a+1} \geq\frac{a^2+b^2}{\sqrt{ab} +1}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ytChen
1092 posts
#55
Y by
sqing wrote:
Let $ a,b,c\geq 0 .$ Prove that$$ \frac{a}{b+c}+ \frac{b }{c+a}+ \frac{4(c+\sqrt{ab})}{a+b}\geq 4$$

Solution. Without loss of generality, assume $a\ge b\ge0$. Since $$\frac{a+b }{c+\sqrt{ab}}+ \frac{4\left(c+\sqrt{ab}\right)}{a+b}\ge4,$$it suffices to show
$$\frac{a}{b+c}+ \frac{b }{c+a}-\frac{a+b}{c+\sqrt{ab} }\ge0,$$which was proved in post #53, and the equality occurs if $b=0$ and $a=2c$. $\blacksquare$
This post has been edited 1 time. Last edited by ytChen, Nov 21, 2024, 8:43 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#56
Y by
Very very nice.Thank ytChen.
Let $ a,b,c>0 $ and $a+b+c=3 . $ Prove that
$$\frac{1}{a^3+abc+1}+\frac{1}{b^3+abc+1}+\frac{1}{c^3+abc+1} \geq 1 $$$$\frac{a(a+b)}{c(c+1)}+\frac{b(b+c)}{a(a+1)}+\frac{c(c+a)}{b(b+1)} \geq 3 $$$$\frac{a+b}{c+1}+\frac{b+c}{a+1}+\frac{c+a}{b+1} \geq 3 \geq  \frac{a(b+c)}{a+1}+\frac{b(c+a)}{b+1}+\frac{c(a+b)}{c+1}  $$$$\frac{(a+b)(b+c)(c+a)}{(a+2)(b+2)(c+2)} \leq \frac{8}{27}$$https://artofproblemsolving.com/community/c6h1338925p7259810
Let $ a,b,c>0 $ and $  a+b+c =1. $ Prove that
$$ \frac{a+b}{a+bc}+\frac{b+c}{b+ca}+\frac{c+a}{c+ab}   \geq  \frac{9}{2}$$
Attachments:
This post has been edited 5 times. Last edited by sqing, Mar 2, 2025, 2:39 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ytChen
1092 posts
#57
Y by
sqing wrote:
Let $ a,b>0 .$ Prove that$$ \frac{a^3}{b(a+1)^2}+ \frac{b^3}{a(b+1)^2}\geq \frac{ab}{ab+1}$$
Solution. Using Hölder’s inequality and AM-GM inequality, we get
\begin{align*} &\frac{a^3}{b(a+1)^2}+ \frac{b^3}{a(b+1)^2}\\
\ge& \frac{(a+b)^3}{2\left[b(a+1)^2+a(b+1)^2\right]}\\
=& \frac{(a+b)^3}{2\left[ab(a+b)+4ab+(a+b)\right]}\\
=& \frac{1}{2\left[\frac{ab}{(a+b)^2}+\frac{4ab}{(a+b)^3}+\frac{1}{(a+b)^2}\right]}\\
\ge& \frac{1}{2\left[\frac{ab}{4ab}+\frac{4ab}{8ab\sqrt{ab}}+\frac{1}{4ab}\right]}\\
=&\frac{1}{\frac{1}{2}\left[1+\frac{2}{\sqrt{ab}}+\frac{1}{ab}\right]}\\
=& \frac{ab}{\frac{1}{2}\left(\sqrt{ab}+1\right)^2}\ge\frac{ab}{ab+1},
\end{align*}where the equality occurs if $a=b=1$. $\blacksquare$
This post has been edited 1 time. Last edited by ytChen, Nov 27, 2024, 3:59 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#58
Y by
Very very nice.Thank ytChen.
Let $ a,b,c>0   . $ Prove that
$$\frac{a^2(a+b)}{b(b+c)}+\frac{b^2(b+c)}{c(c+a)}+\frac{c^2(c+a)}{a(a+b)} \geq a+b+c$$$$\frac{a^2(a+b)}{b(b+c)}+\frac{b^2(b+c)}{c(c+a)}+\frac{c^2(c+a)}{a(a+b)} \geq \sqrt{3(a^2+b^2+c^2)}$$
This post has been edited 1 time. Last edited by sqing, Mar 2, 2025, 2:06 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ytChen
1092 posts
#59
Y by
sqing wrote:
Let $  x\geq 0 .$ Prove that
$$ \frac{(\sqrt{4+9x}+\sqrt{ x })\sqrt{1+2x}}{4+9x}\geq  \frac 12$$
sqing wrote:
Let $  x\geq 0 .$ Prove that
$$ \frac{(\sqrt{4+9x}-\sqrt{ x })\sqrt{1+2x}}{4+9x}\leq  \frac 12$$
Solution.
  1. Since $x\ge0$, we get that
    \begin{align*}&\frac{(\sqrt{4+9x}-\sqrt{ x })\sqrt{1+2x}}{4+9x}\\
\leq& \frac{\sqrt{4+9x}\cdot\sqrt{1+2x}}{4+9x}\\
=& \sqrt{\frac{1+2x}{4+9x}}\le\sqrt{\frac14}=\frac 12,
\end{align*}the maximum value $\frac{1}{2} $ can be attained if $x=0 $.
  2. From $x\ge0$, it follows that
    \begin{align*}& 2\cdot\frac{(\sqrt{4+9x}+\sqrt{ x })\sqrt{1+2x}}{4+9x}\\
\ge& 2\cdot\frac{(\sqrt{4+8x}+\sqrt{ x })\sqrt{1+2x}}{4+9x}\\
 =& 2\cdot\frac{2(1+2x)+\sqrt{ x }\sqrt{1+2x}}{4+9x}\\
\ge& 2\cdot\frac{2(1+2x)+x}{4+9x}\\
=&\frac{4+10x}{4+9x}\ge1,
\end{align*}hence the result, and the minimum value $\frac{1}{2} $ can be attained if $x=0 $. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41876 posts
#60
Y by
Very very nice.Thank ytChen.
Z K Y
N Quick Reply
G
H
=
a