Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Find the value of pq+rs/ps+qr
Darealzolt   1
N an hour ago by vanstraelen
Let \(p,q,r,s\) be real numbers that satisfy
\[
p^2+q^2=r^2+s^2
\]\[
p^2+s^2-ps=q^2+r^2+qr
\]Hence find the value of \(\frac{pq+rs}{ps+qr}\)

Click to reveal hidden text
1 reply
Darealzolt
Yesterday at 3:40 AM
vanstraelen
an hour ago
Ducks can play games now apparently
MortemEtInteritum   35
N 2 hours ago by pi271828
Source: USA TST(ST) 2020 #1
Let $a$, $b$, $c$ be fixed positive integers. There are $a+b+c$ ducks sitting in a
circle, one behind the other. Each duck picks either rock, paper, or scissors, with $a$ ducks
picking rock, $b$ ducks picking paper, and $c$ ducks picking scissors.
A move consists of an operation of one of the following three forms:

[list]
[*] If a duck picking rock sits behind a duck picking scissors, they switch places.
[*] If a duck picking paper sits behind a duck picking rock, they switch places.
[*] If a duck picking scissors sits behind a duck picking paper, they switch places.
[/list]
Determine, in terms of $a$, $b$, and $c$, the maximum number of moves which could take
place, over all possible initial configurations.
35 replies
1 viewing
MortemEtInteritum
Nov 16, 2020
pi271828
2 hours ago
2017 IGO Advanced P3
bgn   18
N 2 hours ago by Circumcircle
Source: 4th Iranian Geometry Olympiad (Advanced) P3
Let $O$ be the circumcenter of triangle $ABC$. Line $CO$ intersects the altitude from $A$ at point $K$. Let $P,M$ be the midpoints of $AK$, $AC$ respectively. If $PO$ intersects $BC$ at $Y$, and the circumcircle of triangle $BCM$ meets $AB$ at $X$, prove that $BXOY$ is cyclic.

Proposed by Ali Daeinabi - Hamid Pardazi
18 replies
bgn
Sep 15, 2017
Circumcircle
2 hours ago
Own made functional equation
JARP091   1
N 3 hours ago by JARP091
Source: Own (Maybe?)
\[
\text{Find all functions } f : \mathbb{R} \to \mathbb{R} \text{ such that:} \\
f(a^4 + a^2b^2 + b^4) = f\left((a^2 - f(ab) + b^2)(a^2 + f(ab) + b^2)\right)
\]
1 reply
JARP091
May 31, 2025
JARP091
3 hours ago
Euler line of incircle touching points /Reposted/
Eagle116   6
N 3 hours ago by pigeon123
Let $ABC$ be a triangle with incentre $I$ and circumcentre $O$. Let $D,E,F$ be the touchpoints of the incircle with $BC$, $CA$, $AB$ respectively. Prove that $OI$ is the Euler line of $\vartriangle DEF$.
6 replies
Eagle116
Apr 19, 2025
pigeon123
3 hours ago
Parallel lines on a rhombus
buratinogigle   1
N 3 hours ago by Giabach298
Source: Own, Entrance Exam for Grade 10 Admission, HSGS 2025
Given the rhombus $ABCD$ with its incircle $\omega$. Let $E$ and $F$ be the points of tangency of $\omega$ with $AB$ and $AC$ respectively. On the edges $CB$ and $CD$, take points $G$ and $H$ such that $GH$ is tangent to $\omega$ at $P$. Suppose $Q$ is the intersection point of the lines $EG$ and $FH$. Prove that two lines $AP$ and $CQ$ are parallel or coincide.
1 reply
buratinogigle
5 hours ago
Giabach298
3 hours ago
Orthocenter lies on circumcircle
whatshisbucket   90
N 3 hours ago by bjump
Source: 2017 ELMO #2
Let $ABC$ be a triangle with orthocenter $H,$ and let $M$ be the midpoint of $\overline{BC}.$ Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{AH},$ different from $A,$ such that $M$ lies on line $PQ.$ Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC.$

Proposed by Michael Ren
90 replies
whatshisbucket
Jun 26, 2017
bjump
3 hours ago
Polish MO Finals 2014, Problem 4
j___d   3
N 4 hours ago by ariopro1387
Source: Polish MO Finals 2014
Denote the set of positive rational numbers by $\mathbb{Q}_{+}$. Find all functions $f: \mathbb{Q}_{+}\rightarrow \mathbb{Q}_{+}$ that satisfy
$$\underbrace{f(f(f(\dots f(f}_{n}(q))\dots )))=f(nq)$$for all integers $n\ge 1$ and rational numbers $q>0$.
3 replies
j___d
Jul 27, 2016
ariopro1387
4 hours ago
S(an) greater than S(n)
ilovemath0402   1
N 4 hours ago by ilovemath0402
Source: Inspired by an old result
Find all positive integer $n$ such that $S(an)\ge S(n) \quad \forall a \in \mathbb{Z}^{+}$ ($S(n)$ is sum of digit of $n$ in base 10)
P/s: Original problem
1 reply
ilovemath0402
5 hours ago
ilovemath0402
4 hours ago
Hagge-like circles, Jerabek hyperbola, Lemoine cubic
kosmonauten3114   0
4 hours ago
Source: My own
Let $\triangle{ABC}$ be a scalene oblique triangle with circumcenter $O$ and orthocenter $H$, and $P$ ($\neq \text{X(3), X(4)}$, $\notin \odot(ABC)$) a point in the plane.
Let $\triangle{A_1B_1C_1}$, $\triangle{A_2B_2C_2}$ be the circumcevian triangles of $O$, $P$, respectively.
Let $\triangle{P_AP_BP_C}$ be the pedal triangle of $P$ with respect to $\triangle{ABC}$.
Let $A_1'$ be the reflection in $P_A$ of $A_1$. Define $B_1'$, $C_1'$ cyclically.
Let $A_2'$ be the reflection in $P_A$ of $A_2$. Define $B_2'$, $C_2'$ cyclically.
Let $O_1$, $O_2$ be the circumcenters of $\triangle{A_1'B_1'C_1'}$, $\triangle{A_2'B_2'C_2'}$, respectively.

Prove that:
1) $P$, $O_1$, $O_2$ are collinear if and only if $P$ lies on the Jerabek hyperbola of $\triangle{ABC}$.
2) $H$, $O_1$, $O_2$ are collinear if and only if $P$ lies on the Lemoine cubic (= $\text{K009}$) of $\triangle{ABC}$.
0 replies
kosmonauten3114
4 hours ago
0 replies
Incenter perpendiculars and angle congruences
math154   84
N 4 hours ago by zuat.e
Source: ELMO Shortlist 2012, G3
$ABC$ is a triangle with incenter $I$. The foot of the perpendicular from $I$ to $BC$ is $D$, and the foot of the perpendicular from $I$ to $AD$ is $P$. Prove that $\angle BPD = \angle DPC$.

Alex Zhu.
84 replies
math154
Jul 2, 2012
zuat.e
4 hours ago
Algebraic Manipulation
Darealzolt   1
N Apr 30, 2025 by Soupboy0
Find the number of pairs of real numbers $a, b, c$ that satisfy the equation $a^4 + b^4 + c^4 + 1 = 4abc$.
1 reply
Darealzolt
Apr 30, 2025
Soupboy0
Apr 30, 2025
Algebraic Manipulation
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Darealzolt
22 posts
#1
Y by
Find the number of pairs of real numbers $a, b, c$ that satisfy the equation $a^4 + b^4 + c^4 + 1 = 4abc$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Soupboy0
499 posts
#2
Y by
$(a, b, c) = (1, 1, 1), (-1, -1, 1)$ and permutations. Note that if $a, b, c > 0$, then $a^4+b^4+c^4+1 \ge 4abc$ by AM-GM, with equality at $a=b=c=1$, which is the only solution for $a, b, c > 0$. Also note that if $1$ or all of $a, b, c$ are negative, then there are no solutions by the Trivial inequality. Also note that when $2$ of $a, b, c$ are negative, then this case is symmetric to $a, b, c > 0$. Therefore, there are $4$ solutions
Z K Y
N Quick Reply
G
H
=
a