We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
Inequality and function
srnjbr   4
N an hour ago by srnjbr
Find all f:R--R such that for all x,y, yf(x)+f(y)>=f(xy)
4 replies
srnjbr
3 hours ago
srnjbr
an hour ago
Problem 4
blug   3
N an hour ago by sunken rock
Source: Polish Junior Math Olympiad Finals 2025
In a rhombus $ABCD$, angle $\angle ABC=100^{\circ}$. Point $P$ lies on $CD$ such that $\angle PBC=20^{\circ}$. Line parallel to $AD$ passing trough $P$ intersects $AC$ at $Q$. Prove that $BP=AQ$.
3 replies
blug
Mar 15, 2025
sunken rock
an hour ago
Simple vector geometry existence
AndreiVila   2
N 2 hours ago by sunken rock
Source: Romanian District Olympiad 2025 9.1
Let $ABCD$ be a parallelogram of center $O$. Prove that for any point $M\in (AB)$, there exist unique points $N\in (OC)$ and $P\in (OD)$ such that $O$ is the center of mass of $\triangle MNP$.
2 replies
AndreiVila
Mar 8, 2025
sunken rock
2 hours ago
CMI Entrance 19#6
bubu_2001   5
N 2 hours ago by quasar_lord
$(a)$ Compute -
\begin{align*}
\frac{\mathrm{d}}{\mathrm{d}x} \bigg[ \int_{0}^{e^x} \log ( t ) \cos^4 ( t ) \mathrm{d}t \bigg]
\end{align*}$(b)$ For $x > 0 $ define $F ( x ) = \int_{1}^{x} t \log ( t ) \mathrm{d}t . $

$1.$ Determine the open interval(s) (if any) where $F ( x )$ is decreasing and all the open interval(s) (if any) where $F ( x )$ is increasing.

$2.$ Determine all the local minima of $F ( x )$ (if any) and all the local maxima of $F ( x )$ (if any) $.$
5 replies
bubu_2001
Nov 1, 2019
quasar_lord
2 hours ago
a! + b! = 2^{c!}
parmenides51   6
N 2 hours ago by ali123456
Source: 2023 Austrian Mathematical Olympiad, Junior Regional Competition , Problem 4
Determine all triples $(a, b, c)$ of positive integers such that
$$a! + b! = 2^{c!}.$$
(Walther Janous)
6 replies
parmenides51
Mar 26, 2024
ali123456
2 hours ago
Inequality
srnjbr   0
3 hours ago
a^2+b^2+c^2+x^2+y^2=1. Find the maximum value of the expression (ax+by)^2+(bx+cy)^2
0 replies
srnjbr
3 hours ago
0 replies
Graph Theory
JetFire008   1
N 3 hours ago by JetFire008
Prove that for any Hamiltonian cycle, if it contain edge $e$, then it must not contain edge $e'$.
1 reply
1 viewing
JetFire008
3 hours ago
JetFire008
3 hours ago
Inspired by hunghd8
sqing   1
N 3 hours ago by sqing
Source: Own
Let $ a,b,c\geq 0 $ and $ a+b+c\geq 2+abc . $ Prove that
$$a^2+b^2+c^2- abc\geq \frac{7}{4}$$$$a^2+b^2+c^2-2abc \geq 1$$$$a^2+b^2+c^2- \frac{1}{2}abc\geq \frac{31}{16}$$$$a^2+b^2+c^2- \frac{8}{5}abc\geq \frac{34}{25}$$
1 reply
sqing
3 hours ago
sqing
3 hours ago
Assisted perpendicular chasing
sarjinius   2
N 3 hours ago by chisa36
Source: Philippine Mathematical Olympiad 2025 P7
In acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$, let $D$ be an arbitrary point on the circumcircle of triangle $ABC$ such that $D$ does not lie on line $OB$ and that line $OD$ is not parallel to line $BC$. Let $E$ be the point on the circumcircle of triangle $ABC$ such that $DE$ is perpendicular to $BC$, and let $F$ be the point on line $AC$ such that $FA = FE$. Let $P$ and $R$ be the points on the circumcircle of triangle $ABC$ such that $PE$ is a diameter, and $BH$ and $DR$ are parallel. Let $M$ be the midpoint of $DH$.
(a) Show that $AP$ and $BR$ are perpendicular.
(b) Show that $FM$ and $BM$ are perpendicular.
2 replies
sarjinius
Mar 9, 2025
chisa36
3 hours ago
Find min
hunghd8   4
N 3 hours ago by imnotgoodatmathsorry
Let $a,b,c$ be nonnegative real numbers such that $ a+b+c\geq 2+abc $. Find min
$$P=a^2+b^2+c^2.$$
4 replies
hunghd8
Today at 12:10 PM
imnotgoodatmathsorry
3 hours ago
Inequalities
sqing   0
3 hours ago
Let $ a,b,c\geq 0 $ and $ a+b+c\geq 2+abc . $ Prove that
$$a^2+b^2+c^2- \frac{2}{5}abc-\frac{1}{2}a^2b^2c^2\geq \frac{48}{25}$$$$a^2+b^2+c^2- \frac{3}{5}abc-\frac{1}{2}a^2b^2c^2\geq \frac{91}{50}$$$$a^2+b^2+c^2- \frac{4}{5}abc-\frac{1}{2}a^2b^2c^2\geq \frac{42}{25}$$$$a^2+b^2+c^2- \frac{8}{5}abc-\frac{1}{2}a^2b^2c^2\geq \frac{3(7\sqrt{21}-27)}{25}$$$$a^2+b^2+c^2- \frac{9}{5}abc-\frac{1}{2}a^2b^2c^2\geq \frac{8}{261+41 \sqrt{41}}$$
0 replies
sqing
3 hours ago
0 replies
An inequality
jokehim   1
N 3 hours ago by bhontu
Let $a,b,c \in \mathbb{R}: a+b+c=3$ then prove $$\color{black}{\frac{a^2}{a^{2}-2a+3}+\frac{b^2}{b^{2}-2b+3}+\frac{c^2}{c^{2}-2c+3}\ge \frac{3}{2}.}$$
1 reply
jokehim
4 hours ago
bhontu
3 hours ago
Inequalities
sqing   6
N Mar 17, 2025 by sqing
Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 3  $. Prove that
$$ a+b+a^2+b^2 \geq 28-6\sqrt{21}$$Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 4  $. Prove that
$$ a+b+a^2+b^2 \geq 10-4\sqrt 5$$Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 5  $. Prove that
$$ a+b+a^2+b^2 \geq \frac {2(26-5\sqrt{13})}{9} $$Let $ a, b\geq 0 $ and $\frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1}\geq 3+ \sqrt {5}   $. Prove that
$$ a+b+a^2+b^2 \geq 2$$
6 replies
sqing
Mar 14, 2025
sqing
Mar 17, 2025
Inequalities
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41157 posts
#1
Y by
Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 3  $. Prove that
$$ a+b+a^2+b^2 \geq 28-6\sqrt{21}$$Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 4  $. Prove that
$$ a+b+a^2+b^2 \geq 10-4\sqrt 5$$Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 5  $. Prove that
$$ a+b+a^2+b^2 \geq \frac {2(26-5\sqrt{13})}{9} $$Let $ a, b\geq 0 $ and $\frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1}\geq 3+ \sqrt {5}   $. Prove that
$$ a+b+a^2+b^2 \geq 2$$
This post has been edited 2 times. Last edited by sqing, Mar 14, 2025, 8:31 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41157 posts
#2
Y by
Let $ a, b\geq 0 $ and $\frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1}\geq 4  $. Prove that
$$ a+b+a^2+ab+b^2 \geq \frac{27-11\sqrt {5}}{2} $$Let $ a, b\geq 0 $ and $\frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1}\geq \frac{2}{5}(7+ 2\sqrt {7})  $. Prove that
$$ a+b+a^2+ab+b^2 \geq 2$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lbh_qys
425 posts
#3
Y by
sqing wrote:
Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 3  $. Prove that
$$ a+b+a^2+b^2 \geq 28-6\sqrt{21}$$
WLOG \( a \geq b \).

If \( a+b \geq 1 \), then
\[
a+b+a^2+b^2 \geq 1 \geq 28-6\sqrt{21}.
\]
If \( a+b < 1 \), then
\[
\frac{1}{b^2-b+1} \leq \frac{1}{a^2-a+1}, a^2 + a + 1 \geq b^2 + b + 1
\]which implies that
\[
\frac{a^2+a+1}{a^2-a+1}+\frac{b^2+b+1}{b^2-b+1} \geq \frac{a^2+a+1}{b^2-b+1}+\frac{b^2+b+1}{a^2-a+1} \geq 3.
\]
Thus, by the Cauchy–Schwarz inequality,
\[
3 \geq 6-\left(\frac{a^2+a+1}{a^2-a+1}+\frac{b^2+b+1}{b^2-b+1}\right)
=\frac{2(a-1)^2}{a^2-a+1}+\frac{2(b-1)^2}{b^2-b+1}
\geq \frac{2(1-a+1-b)^2}{a^2-a+1+b^2-b+1}.
\]
Let \( u = a+b \) and \( v = ab \). Then,
\[
3\left(u^2-u+1-2v\right) \geq 2\,(2-u)^2.
\]
Hence,
\[
u^2-4v \geq \frac{u^2-10u+4}{3}.
\]
Since
\[
a+b+a^2+b^2 = u^2-2v+u = \frac{u^2-4v}{2}+\frac{u^2}{2}+u,
\]if \( u \leq 5-\sqrt{21} < \frac{1}{2} \), then
\[
\frac{u^2-4v}{2}+\frac{u^2}{2}+u \geq \frac{u^2-10u+4}{6}+\frac{u^2}{2}+u
=\frac{2}{3}\,(u^2-u+1).
\]
Because \( u^2-u+1 \) is monotonically decreasing on \( u\in \left(0,5-\sqrt{21}\right] \), it follows that
\[
\frac{2}{3}\,(u^2-u+1) \geq \frac{2}{3}\Bigl[(5-\sqrt{21})^2-(5-\sqrt{21})+1\Bigr]
= 28-6\sqrt{21}.
\]
If \( 5-\sqrt{21} < u < 1 \), then since \( u^2\geq 4v \), we have
\[
\frac{u^2-4v}{2}+\frac{u^2}{2}+u \geq \frac{u^2}{2}+u \geq \frac{(5-\sqrt{21})^2}{2}+(5-\sqrt{21})
= 28-6\sqrt{21}.
\]
Therefore, in all cases,
\[
a+b+a^2+b^2 \geq 28-6\sqrt{21}.
\]
This post has been edited 5 times. Last edited by lbh_qys, Mar 14, 2025, 11:06 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41157 posts
#4
Y by
Very very nice.Thank lbh_qys.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DAVROS
1630 posts
#5
Y by
sqing wrote:
Let $ a, b\geq 0 $ and $ \frac {a^2+a+1}{b^2-b+1}+\frac {b^2+b+1}{a^2-a+1} \geq 5  $. Prove that $ a+b+a^2+b^2 \geq \frac {2(26-5\sqrt{13})}{9} $
solution
This post has been edited 2 times. Last edited by DAVROS, Mar 16, 2025, 9:24 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41157 posts
#6
Y by
Very very nice.Thank DAVROS.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41157 posts
#7
Y by
Let $ a ,  b\geq 0 $ and $     \frac{1}{a^2+1}+\frac{1}{b^2+1} \le1-\frac{1 }{\sqrt2} . $ Show that$$ a+b+ab\geq5+4\sqrt 2$$Let $ a ,  b\geq 0 $ and $  \frac{1}{a^2+1}+\frac{1}{b^2+1} \ge1+\frac{1 }{\sqrt2}  . $ Show that$$ a+b+ab\leq1$$Let $ a ,  b\geq 0 $ and $ \frac{1}{a^2+1}+\frac{1}{b^2+1}\ge \frac{2(5+2\sqrt3) }{13} . $ Show that$$ a+b+ab\leq2$$Let $ a ,  b\geq 0 $ and $     \frac{1}{a^2+1}+\frac{1}{b^2+1}  \le \frac{15+\sqrt 5 }{10}. $ Show that$$    a+b+ab+a^2+b^2\geq 1$$Let $ a ,  b  $ be reals such that $ \frac{1}{a^2+1}+\frac{1}{b^2+1}\ge  \frac{4(4+\sqrt3) }{13}. $ Show that$$    a+b+a^2+b^2\leq 1$$Let $ a ,  b  $ be reals such that $  \frac{1}{a^2+1}+\frac{1}{b^2+1}\ge \frac{9 }{5}. $ Show that$$    a+b+ab+a^2+b^2\leq 1$$
This post has been edited 6 times. Last edited by sqing, Mar 17, 2025, 1:07 PM
Z K Y
N Quick Reply
G
H
=
a