Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Where are the Circles?
luminescent   44
N 6 minutes ago by endless_abyss
Source: EGMO 2022/1
Let $ABC$ be an acute-angled triangle in which $BC<AB$ and $BC<CA$. Let point $P$ lie on segment $AB$ and point $Q$ lie on segment $AC$ such that $P \neq B$, $Q \neq C$ and $BQ = BC = CP$. Let $T$ be the circumcenter of triangle $APQ$, $H$ the orthocenter of triangle $ABC$, and $S$ the point of intersection of the lines $BQ$ and $CP$. Prove that $T$, $H$, and $S$ are collinear.
44 replies
luminescent
Apr 9, 2022
endless_abyss
6 minutes ago
Hard Function
johnlp1234   6
N 10 minutes ago by GreekIdiot
f:R+--->R+:
f(x^3+f(y))=y+(f(x))^3
6 replies
johnlp1234
Jul 7, 2020
GreekIdiot
10 minutes ago
Incircle in an isoscoles triangle
Sadigly   1
N 15 minutes ago by Primeniyazidayi
Source: own
Let $ABC$ be an isosceles triangle with $AB=AC$, and let $I$ be its incenter. Incircle touches sides $BC,CA,AB$ at $D,E,F$, respectively. Foot of altitudes from $E,F$ to $BC$ are $X,Y$ , respectively. Rays $XI,YI$ intersect $(ABC)$ at $P,Q$, respectively. Prove that $(PQD)$ touches incircle at $D$.
1 reply
Sadigly
Yesterday at 9:21 PM
Primeniyazidayi
15 minutes ago
D1033 : A problem of probability for dominoes 3*1
Dattier   1
N 17 minutes ago by Dattier
Source: les dattes à Dattier
Let $G$ a grid of 9*9, we choose a little square in $G$ of this grid three times, we can choose three times the same.

What the probability of cover with 3*1 dominoes this grid removed by theses little squares (one, two or three) ?
1 reply
Dattier
Thursday at 12:29 PM
Dattier
17 minutes ago
Insspired by Shandong 2025
sqing   0
22 minutes ago
Source: Own
Let $ a,b,c>0,abc>1$. Prove that$$ \frac {abc(a+b+c+ab+bc+ca+3)}{  abc-1}\geq \frac {81}{4}$$$$  \frac {abc(a+b+c+ab+bc+ca+abc+2)}{  abc-1}\geq  12+8\sqrt{2}$$
0 replies
1 viewing
sqing
22 minutes ago
0 replies
Find the minimum
sqing   1
N 24 minutes ago by sqing
Source: China Shandong High School Mathematics Competition 2025 Q4
Let $ a,b,c>0,abc>1$. Find the minimum value of $ \frac {abc(a+b+c+8)}{abc-1}. $
1 reply
+1 w
sqing
32 minutes ago
sqing
24 minutes ago
A point on BC
jayme   2
N 27 minutes ago by jayme
Source: Own ?
Dear Mathlinkers,

1. ABC a triangle
2. 0 the circumcircle
3. D the pole of BC wrt 0
4. B', C' the symmetrics of B, C wrt AC, AB
5. 1b, 1c the circumcircles of the triangles BB'D, CC'D
6. T the second point of intersection of the tangent to 1c at D with 1b.

Prove : B, C and T are collinear.

Sincerely
Jean-Louis
2 replies
jayme
4 hours ago
jayme
27 minutes ago
Pythagoras...
Hip1zzzil   1
N 35 minutes ago by Primeniyazidayi
Source: KMO 2025 Round 1 P20
Find the sum of all $k$s such that:
There exists two odd positive integers $a,b$ such that ${k}^{2}={a}^{2b}+{(2b)}^{4}.$
1 reply
Hip1zzzil
Today at 3:41 AM
Primeniyazidayi
35 minutes ago
n = d2^2 + d3^3
codyj   5
N 42 minutes ago by NicoN9
Source: OMM 2008 1
Let $1=d_1<d_2<d_3<\dots<d_k=n$ be the divisors of $n$. Find all values of $n$ such that $n=d_2^2+d_3^3$.
5 replies
codyj
Jul 19, 2014
NicoN9
42 minutes ago
Another Number Theory!
matinyousefi   7
N 2 hours ago by MR.1
Source: Iran MO 2024 second round P6
Find all natural numbers $x,y>1$and primes $p$ that satisfy $$\frac{x^2-1}{y^2-1}=(p+1)^2. $$
7 replies
matinyousefi
Apr 19, 2024
MR.1
2 hours ago
IMO Shortlist 2014 A2
hajimbrak   40
N 2 hours ago by ezpotd
Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \  x < \frac 12\\ x^2 & \text{if}\ \  x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\]

Proposed by Denmark
40 replies
hajimbrak
Jul 11, 2015
ezpotd
2 hours ago
sequence positive
malinger   38
N 3 hours ago by ezpotd
Source: ISL 2006, A2, VAIMO 2007, P4, Poland 2007
The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$.

Proposed by Mariusz Skalba, Poland
38 replies
malinger
Apr 22, 2007
ezpotd
3 hours ago
3 numbers have their fractional parts lying in the interval
orl   13
N 3 hours ago by ezpotd
Source: IMO Shortlist 2000, A2
Let $ a, b, c$ be positive integers satisfying the conditions $ b > 2a$ and $ c > 2b.$ Show that there exists a real number $ \lambda$ with the property that all the three numbers $ \lambda a, \lambda b, \lambda c$ have their fractional parts lying in the interval $ \left(\frac {1}{3}, \frac {2}{3} \right].$
13 replies
orl
Aug 10, 2008
ezpotd
3 hours ago
IMO 2016 Problem 2
shinichiman   65
N 3 hours ago by Mathgloggers
Source: IMO 2016 Problem 2
Find all integers $n$ for which each cell of $n \times n$ table can be filled with one of the letters $I,M$ and $O$ in such a way that:
[LIST]
[*] in each row and each column, one third of the entries are $I$, one third are $M$ and one third are $O$; and [/*]
[*]in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are $I$, one third are $M$ and one third are $O$.[/*]
[/LIST]
Note. The rows and columns of an $n \times n$ table are each labelled $1$ to $n$ in a natural order. Thus each cell corresponds to a pair of positive integer $(i,j)$ with $1 \le i,j \le n$. For $n>1$, the table has $4n-2$ diagonals of two types. A diagonal of first type consists all cells $(i,j)$ for which $i+j$ is a constant, and the diagonal of this second type consists all cells $(i,j)$ for which $i-j$ is constant.
65 replies
shinichiman
Jul 11, 2016
Mathgloggers
3 hours ago
PAMO Problem 4: Perpendicular lines
DylanN   11
N Apr 23, 2025 by ATM_
Source: 2019 Pan-African Mathematics Olympiad, Problem 4
The tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$ meet at $D$. The circumcircle of $\triangle BCD$ meets sides $AC$ and $AB$ again at $E$ and $F$ respectively. Let $O$ be the circumcentre of $\triangle ABC$. Show that $AO$ is perpendicular to $EF$.
11 replies
DylanN
Apr 9, 2019
ATM_
Apr 23, 2025
PAMO Problem 4: Perpendicular lines
G H J
G H BBookmark kLocked kLocked NReply
Source: 2019 Pan-African Mathematics Olympiad, Problem 4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DylanN
194 posts
#1 • 2 Y
Y by Adventure10, Mango247
The tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$ meet at $D$. The circumcircle of $\triangle BCD$ meets sides $AC$ and $AB$ again at $E$ and $F$ respectively. Let $O$ be the circumcentre of $\triangle ABC$. Show that $AO$ is perpendicular to $EF$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pad
1671 posts
#3 • 2 Y
Y by Adventure10, Mango247
We know $AD$ is the $A$-symmedian of $\triangle ABC$, so it is well known that $B,C,D,O$ are concyclic. So $(BCD)=(BCO)$. Then $\angle EAO = \angle CAO=90-B$, and $\angle AEF=180-\angle CEF=180-\angle CBF=B$ since $E,C,F,B$ are concyclic. Therefore, $AO\perp EF$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DylanN
194 posts
#4 • 2 Y
Y by Adventure10, Mango247
It's not important that $D$ is defined as the intersection of the tangents. We can replace the circumcircle of $\triangle BCD$ with any circle that passes through $B$ and $C$. Indeed, we know that $\angle CAO = 90^\circ - \angle B$, and since $BCEF$ is cyclic, we have that $\angle B = \angle CEF$, from which the result follows.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
khanhnx
1618 posts
#5 • 1 Y
Y by Adventure10
This problem has been posted in here
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AshAuktober
1008 posts
#6
Y by
Observe that we can obtain $\Delta AEF$ by reflecting $\Delta ABC$ about its $A-$angle bisector and taking a homothety at $A$. Now since the circumcentre and orthocentre are isogonal conjugates, $O$ has to lie on the $A-$altitude of $\Delta AEF$, and therefore we are done. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Aiden-1089
295 posts
#7
Y by
Let $H$ be the orthocenter of $ABC$.
$\measuredangle BEC = \measuredangle BDC = \measuredangle BFC \implies BCEF$ is concyclic $\implies \Delta ABC \sim \Delta AEF$.
Consider taking a suitable homothety about A then reflecting across the angle bisector of $\angle BAC$, such that $BC$ goes to $EF$. Under this transformation, line $AH$ goes to line $AO$ because they are isogonal in $\angle BAC$. Since $AH \perp BC$, we have $AO \perp EF$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jishnu4414l
155 posts
#8
Y by
We know that $\measuredangle OAC=90^{\circ}-\measuredangle CBA=\measuredangle KAE$
Also, $\measuredangle CBA=\measuredangle CEF=\measuredangle AEK$
Now, $\measuredangle KAE+\measuredangle AEK+\measuredangle EKA=0$
$\implies 90^{\circ}-\measuredangle CBA+\measuredangle CBA +\measuredangle EKA=0$
$\implies \measuredangle EKA=90^{\circ}$
And we are done!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fasttrust_12-mn
118 posts
#9
Y by
Claim: $O$ lies on the circumcircle of $\triangle BDC$
proof:
$$\measuredangle BAC =\measuredangle BCD \implies \measuredangle BDC= 180^{\circ}- 2\times \measuredangle BAC$$, we know that
$$\measuredangle BOC = 2\times \measuredangle BAC$$so
$$OBDC  \text{ is cyclic quad }$$
$$\measuredangle FBC=\measuredangle AEF $$$$\measuredangle OAC=\measuredangle OCA$$$$\measuredangle OCB=90^{\circ}$$we know that
$$\measuredangle AEG=90^{\circ}-\measuredangle BAO-\measuredangle OAE + \measuredangle BAO\implies 90^{\circ}-\measuredangle OAE$$$$\measuredangle AGE =180^{\circ}-(90^{\circ}-\measuredangle OAE+\measuredangle  OAE)=90^{\circ}$$hence we are done $\blacksquare$
Attachments:
This post has been edited 3 times. Last edited by fasttrust_12-mn, Jul 19, 2024, 2:20 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tony_stark0094
69 posts
#10
Y by
$$\angle EBF=\angle BAF+\angle AFB=\angle A + \angle BDC=\angle A + 180 - 2\angle A = 180 - \angle A$$$$\implies FA=FB$$$$by\ symmetry\ we \ can\ get \ that\ EA=EC$$hence $F$ lies on perpendicular bisector of $AB$ and $E$ lies on perpendicular bisector of $AC$ moreover $G$ also lies on these lines
$\implies G$ is the orthocentre of $\Delta AEF$ hence $AG$ is perpendicular to $EF$
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rayanelba
20 posts
#11 • 1 Y
Y by ATM_
To prove that $AO$ perpendicular to $EF$ , it suffies to prove that: $OAC=\frac{\pi}{2}-\measuredangle CFE$
We know that : $\measuredangle OAC=\frac{\pi}{2}-\measuredangle CBA$
And : $\measuredangle CBA=\pi-\measuredangle CBE=\measuredangle CFE$ (because CFEB is cyclic)
$\implies \measuredangle OAC=\frac{\pi}{2}-\measuredangle CFE$
Q.E.D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ATM_
23 posts
#12
Y by
nice solution*
This post has been edited 1 time. Last edited by ATM_, Apr 23, 2025, 11:08 PM
Reason: .
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ATM_
23 posts
#13
Y by
here is a cute sketch
Attachments:
Z K Y
N Quick Reply
G
H
=
a