Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Tangents inducing isogonals
nikolapavlovic   56
N 6 minutes ago by Ilikeminecraft
Source: Serbian MO 2017 6
Let $k$ be the circumcircle of $\triangle ABC$ and let $k_a$ be A-excircle .Let the two common tangents of $k,k_a$ cut $BC$ in $P,Q$.Prove that $\measuredangle PAB=\measuredangle CAQ$.
56 replies
nikolapavlovic
Apr 2, 2017
Ilikeminecraft
6 minutes ago
Elementary Problems Compilation
Saucepan_man02   25
N 9 minutes ago by trangbui
Could anyone send some elementary problems, which have tricky and short elegant methods to solve?

For example like this one:
Solve over reals: $$a^2 + b^2 + c^2 + d^2  -ab-bc-cd-d +2/5=0$$
25 replies
Saucepan_man02
Monday at 1:44 PM
trangbui
9 minutes ago
partitioning 1 to p-1 into several a+b=c (mod p)
capoouo   5
N 14 minutes ago by NerdyNashville
Source: own
Given a prime number $p$, a set is said to be $p$-good if the set contains exactly three elements $a, b, c$ and $a + b \equiv c \pmod{p}$.
Find all prime number $p$ such that $\{ 1, 2, \cdots, p-1 \}$ can be partitioned into several $p$-good sets.

Proposed by capoouo
5 replies
capoouo
Apr 21, 2024
NerdyNashville
14 minutes ago
Not homogenous, messy inequality
Kimchiks926   11
N 17 minutes ago by Learning11
Source: Latvian TST for Baltic Way 2019 Problem 1
Prove that for all positive real numbers $a, b, c$ with $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} =1$ the following inequality holds:
$$3(ab+bc+ca)+\frac{9}{a+b+c} \le \frac{9abc}{a+b+c} + 2(a^2+b^2+c^2)+1$$
11 replies
Kimchiks926
May 29, 2020
Learning11
17 minutes ago
Problem 5
blug   2
N 18 minutes ago by Jjesus
Source: Czech-Polish-Slovak Junior Match 2025 Problem 5
For every integer $n\geq 1$ prove that
$$\frac{1}{n+1}-\frac{2}{n+2}+\frac{3}{n+3}-\frac{4}{n+4}+...+\frac{2n-1}{3n-1}>\frac{1}{3}.$$
2 replies
blug
May 19, 2025
Jjesus
18 minutes ago
D,E,F are collinear.
TUAN2k8   0
35 minutes ago
Source: Own
Help me with this:
0 replies
TUAN2k8
35 minutes ago
0 replies
NT Game in Iran TST
M11100111001Y1R   6
N 2 hours ago by sami1618
Source: Iran TST 2025 Test 1 Problem 2
Suppose \( p \) is a prime number. We have a number of cards, each of which has a number written on it such that each of the numbers \(1, \dots, p-1 \) appears at most once and $0$ exactly once. To design a game, for each pair of cards \( x \) and \( y \), we want to determine which card wins over the other. The following conditions must be satisfied:

$a)$ If card \( x \) wins over card \( y \), and card \( y \) wins over card \( z \), then card \( x \) must also win over card \( z \).

$b)$ If card \( x \) does not win over card \( y \), and card \( y \) does not win over card \( z \), then for any card \( t \), card \( x + z \) must not win over card \( y + t \).

What is the maximum number of cards such that the game can be designed (i.e., one card does not defeat another unless the victory is symmetric or consistent)?
6 replies
M11100111001Y1R
Yesterday at 6:19 AM
sami1618
2 hours ago
Brilliant Problem
M11100111001Y1R   1
N 2 hours ago by aaravdodhia
Source: Iran TST 2025 Test 3 Problem 3
Find all sequences \( (a_n) \) of natural numbers such that for every pair of natural numbers \( r \) and \( s \), the following inequality holds:
\[
\frac{1}{2} < \frac{\gcd(a_r, a_s)}{\gcd(r, s)} < 2
\]
1 reply
M11100111001Y1R
Yesterday at 7:28 AM
aaravdodhia
2 hours ago
Problem 3
blug   2
N 2 hours ago by LeYohan
Source: Polish Junior Math Olympiad Finals 2025
Find all primes $(p, q, r)$ such that
$$pq+4=r^4.$$
2 replies
blug
Mar 15, 2025
LeYohan
2 hours ago
Dophantine equation
MENELAUSS   0
2 hours ago
Solve for $x;y \in \mathbb{Z}$ the following equation :
$$3^x-8^y =2xy+1 $$
0 replies
MENELAUSS
2 hours ago
0 replies
New playlist for Geometry Treasure
Plane_geometry_youtuber   0
2 hours ago
Hi,

I restarted a new playlist which I will introduce about 1500 theorem of plane geometry. This will be a solid foundation for those who want to be familiar and proficient on plane geometry. I put the link below

https://www.youtube.com/watch?v=K7BIBOABuVk&list=PLucWiuOCb2ZrLiPY95kZ6HuywkaNpIEh8

Please share it to the people who need it.

Thank you!
0 replies
Plane_geometry_youtuber
2 hours ago
0 replies
Inequalities
pcthang   11
N 2 hours ago by flower417477
Prove that $|\cos x|+|\cos 2x|+\ldots+|\cos 2^nx|\geq \frac{n}{3}$
11 replies
pcthang
Dec 21, 2016
flower417477
2 hours ago
Isogonal Conjugates of Nagel and Gergonne Point
SerdarBozdag   6
N 2 hours ago by ohiorizzler1434
Source: http://math.fau.edu/yiu/Oldwebsites/Geometry2013Fall/Geometry2013Chapter12.pdf
Proposition 12.1.
(a) The isogonal conjugate of the Gergonne point is the insimilicenter of
the circumcircle and the incircle.
(b) The isogonal conjugate of the Nagel point is the exsimilicenter of the circumcircle and
the incircle.
Note: I need synthetic solution.
6 replies
SerdarBozdag
Apr 17, 2021
ohiorizzler1434
2 hours ago
Looking for someone to work with
midacer   1
N 3 hours ago by wipid98
I’m looking for a motivated study partner (or small group) to collaborate on college-level competition math problems, particularly from contests like the Putnam, IMO Shortlist, IMC, and similar. My goal is to improve problem-solving skills, explore advanced topics (e.g., combinatorics, NT, analysis), and prepare for upcoming competitions. I’m new to contests but have a strong general math background(CPGE in Morocco). If interested, reply here or DM me to discuss
1 reply
midacer
4 hours ago
wipid98
3 hours ago
Connecting chaos in a grid
Assassino9931   3
N Apr 25, 2025 by dgrozev
Source: Bulgaria National Olympiad 2025, Day 1, Problem 2
Exactly \( n \) cells of an \( n \times n \) square grid are colored black, and the remaining cells are white. The cost of such a coloring is the minimum number of white cells that need to be recolored black so that from any black cell \( c_0 \), one can reach any other black cell \( c_k \) through a sequence \( c_0, c_1, \ldots, c_k \) of black cells where each consecutive pair \( c_i, c_{i+1} \) are adjacent (sharing a common side) for every \( i = 0, 1, \ldots, k-1 \). Let \( f(n) \) denote the maximum possible cost over all initial colorings with exactly \( n \) black cells. Determine a constant $\alpha$ such that
\[
\frac{1}{3}n^{\alpha} \leq f(n) \leq 3n^{\alpha}
\]for any $n\geq 100$.
3 replies
Assassino9931
Apr 8, 2025
dgrozev
Apr 25, 2025
Connecting chaos in a grid
G H J
Source: Bulgaria National Olympiad 2025, Day 1, Problem 2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1368 posts
#1 • 1 Y
Y by cubres
Exactly \( n \) cells of an \( n \times n \) square grid are colored black, and the remaining cells are white. The cost of such a coloring is the minimum number of white cells that need to be recolored black so that from any black cell \( c_0 \), one can reach any other black cell \( c_k \) through a sequence \( c_0, c_1, \ldots, c_k \) of black cells where each consecutive pair \( c_i, c_{i+1} \) are adjacent (sharing a common side) for every \( i = 0, 1, \ldots, k-1 \). Let \( f(n) \) denote the maximum possible cost over all initial colorings with exactly \( n \) black cells. Determine a constant $\alpha$ such that
\[
\frac{1}{3}n^{\alpha} \leq f(n) \leq 3n^{\alpha}
\]for any $n\geq 100$.
This post has been edited 1 time. Last edited by Assassino9931, Apr 9, 2025, 8:54 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
internationalnick123456
135 posts
#2 • 1 Y
Y by cubres
Answer
Solution
This post has been edited 3 times. Last edited by internationalnick123456, Apr 9, 2025, 10:15 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1368 posts
#3 • 1 Y
Y by internationalnick123456
Answer

Construction for upper bound

Argument for lower bound

By accident, the constants actually matter!
This post has been edited 1 time. Last edited by Assassino9931, Apr 9, 2025, 8:46 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dgrozev
2464 posts
#4 • 1 Y
Y by Miquel-point
Here is an argument using a spannong tree for the lower bound.

We may think of the configuration as a graph $G$ with $n^2$ vertices (cells) and edges that connect each two adjacent cells (sharing a side). We want to choose $m$ such that a grid with distance $m$ between two consecutive columns/rows contains at least $n$ cells. So $m$ must satisfy:
$$\left(\left\lfloor \frac{n-1}{m}\right\rfloor+1\right)^2\ge n.$$An easy calculation shows that it's enough to take $m:=\left\lfloor\sqrt{n}-\frac{1}{\sqrt{n}}\right\rfloor$. Let $V'$ be the set of $n$ cells, any two of them of distance at least $m$ between them. Let $T(V)$ be a connected subgraph of $G$ with a vertex-set $V$ such that $V'\subset V$. In what follows below, given an edge $e=uv$, by |uv| we denote its length, that is, the number of hops needed to reach $v$ from $u$, or, in other words, the so called manhattan distance between $u$ and $v$. |T| denotes the total length of $T$, that is, the sum of lengths of its edges.

Clearly $T$ is a tree, because we can remove the redundant edges until $T$ is still connected. Note that the claim is trivial in case $V'=V$, because in this case $|V|=n$ and each edge of $T$ has a length at least $m$, hence $|T|\ge (n-1)m$. (There was a glitch in the originally proposed solution, since it took for granted that $V'=V$, which cannot be guaranteed).

So, a bit more care is needed in case $V'\subsetneq V$. Let us refer to the vertices in $V\setminus V'$ as to the white vertices and to the vertices in $V'$ as to the black vertices. Let $v_0$ be a white vertex of $T$. We refer further to it as the root of $T$. We apply the following

Procedure. We delete all white leaves of $T$ (except of $v_0$). Take a leaf $v$ of $T$ with the largest number of vertices between $v$ and $v_0$. Let $v'$ be the neighbor of $v$. If $v'$ is black, we delete the edge $v'v$ whose length is at least $m$ and start the procedure from the beginning.

Assume now, $v'$ is white. If $\deg(v')=2$, we can assume that there is no need of $v'$ and just prolong the two edges that $v'$ is incident with. Let $v_1=v, v_2,\ldots,v_k$ be all the leaves that $v'$ is connected to, and $k\ge 2$. We have:
$$|v'v_i|+|v'v_{i+1}|\ge |v_iv_{i+1}|, i=1,2,\ldots,k,$$where we assume $v_{k+1}=v_1$. Note that $|v_iv_{i+1}|\ge m$ since all $v_i$ are black. Summing up these inequalities, we get:
$$\sum_{i=1}^k|v'v_i|\ge \frac{1}{2}\sum_{i=1}^k \left |v_i v_{i+1}\right|\ge \frac{km}{2}.$$Now, we delete the vertex $v'$. With this, we delete edges with length at least $mk/2$.
Repeat the procedure till we are left with the root $v_0$, which is white.

Note that each time we delete a set of $k$ black vertices, the corresponding deleted edges have total length at least $mk/2$, that is, the number of cells not in $V'$ that cover these edges is at least $mk/2-k=k(m-2)/2$. Therefore, the total number of cells not in $V'$ that cover $T$ is at least:
$$|V'|\cdot (m-2)/2=\frac{1}{2}n \cdot (m-2) \ge \frac{n(\sqrt{n}-3-1/\sqrt{n})}{2}\ge \frac{n^{3/2}}{3},$$as $n\ge 100$.
Z K Y
N Quick Reply
G
H
=
a