Plan ahead for the next school year. Schedule your class today!

G
Topic
First Poster
Last Poster
k a July Highlights and 2025 AoPS Online Class Information
jwelsh   0
Jul 1, 2025
We are halfway through summer, so be sure to carve out some time to keep your skills sharp and explore challenging topics at AoPS Online and our AoPS Academies (including the Virtual Campus)!

[list][*]Over 60 summer classes are starting at the Virtual Campus on July 7th - check out the math and language arts options for middle through high school levels.
[*]At AoPS Online, we have accelerated sections where you can complete a course in half the time by meeting twice/week instead of once/week, starting on July 8th:
[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC Problem Series[/list]
[*]Plus, AoPS Online has a special seminar July 14 - 17 that is outside the standard fare: Paradoxes and Infinity
[*]We are expanding our in-person AoPS Academy locations - are you looking for a strong community of problem solvers, exemplary instruction, and math and language arts options? Look to see if we have a location near you and enroll in summer camps or academic year classes today! New locations include campuses in California, Georgia, New York, Illinois, and Oregon and more coming soon![/list]

MOP (Math Olympiad Summer Program) just ended and the IMO (International Mathematical Olympiad) is right around the corner! This year’s IMO will be held in Australia, July 10th - 20th. Congratulations to all the MOP students for reaching this incredible level and best of luck to all selected to represent their countries at this year’s IMO! Did you know that, in the last 10 years, 59 USA International Math Olympiad team members have medaled and have taken over 360 AoPS Online courses. Take advantage of our Worldwide Online Olympiad Training (WOOT) courses
and train with the best! Please note that early bird pricing ends August 19th!
Are you tired of the heat and thinking about Fall? You can plan your Fall schedule now with classes at either AoPS Online, AoPS Academy Virtual Campus, or one of our AoPS Academies around the US.

Our full course list for upcoming classes is below:
All classes start 7:30pm ET/4:30pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Sunday, Oct 19 - Jan 25
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Sat & Sun, Sep 13 - Sep 14 (1:00 - 4:00 PM PT/4:00 - 7:00 PM ET)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Wednesday, Sep 24 - Dec 17

Precalculus
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Calculus
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT


Programming

Introduction to Programming with Python
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26
0 replies
jwelsh
Jul 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
2025 IMO TEAMS
Oksutok   64
N 3 minutes ago by Moubinool
Good Luck in Sunshine Coast, Australia
64 replies
+2 w
Oksutok
May 14, 2025
Moubinool
3 minutes ago
Nice and Difficult Geometry (Collinearity)
RANDOM__USER   9
N 5 minutes ago by ezpotd
Source: Own
Let \( D \) be an arbitrary point on the side \( BC \) of triangle \( \triangle ABC \). Let \( E \) and \( F \) be the intersections of the lines through \( D \), parallel to \( AC \) and \( AB \), with \( AB \) and \( AC \), respectively. Let \( G \) be the intersection point of the circumcircle of \( \triangle AFE \) with the circumcircle of \( \triangle ABC \). Let \( M \) be the midpoint of \( BC \), and let \( X \) be the intersection point of line \( AM \) with the circumcircle of \( \triangle ABC \). Prove that \( X \), \( D \), and \( G\) are collinear.

IMAGE
9 replies
+1 w
RANDOM__USER
Jul 9, 2025
ezpotd
5 minutes ago
IMO 2006 Slovenia - PROBLEM 4
Valentin Vornicu   91
N 14 minutes ago by cubres
Determine all pairs $(x, y)$ of integers such that \[1+2^{x}+2^{2x+1}= y^{2}.\]
91 replies
Valentin Vornicu
Jul 13, 2006
cubres
14 minutes ago
Bounded function satisfying averaging condition
62861   41
N 40 minutes ago by ray66
Source: USA Winter Team Selection Test #1 for IMO 2018, Problem 2
Find all functions $f\colon \mathbb{Z}^2 \to [0, 1]$ such that for any integers $x$ and $y$,
\[f(x, y) = \frac{f(x - 1, y) + f(x, y - 1)}{2}.\]
Proposed by Yang Liu and Michael Kural
41 replies
62861
Dec 11, 2017
ray66
40 minutes ago
How about an AOPS MO?
MathMaxGreat   16
N an hour ago by jkim0656
I am planning to make a $APOS$ $MO$, we can post new and original problems, my idea is to make an competition like $IMO$, 6 problems for 2 rounds
Any idea and plans?
16 replies
MathMaxGreat
Today at 2:37 AM
jkim0656
an hour ago
Reflection
cmtappu96   6
N an hour ago by SomeonecoolLovesMaths
Let $ABC$ be a triangle in which $\angle A = 60^\circ$. Let $BE$ and $CF$ be the bisectors of $\angle B$ and $\angle C$ with $E$ on $AC$ and $F$ on $AB$. Let $M$ be the reflection of $A$ in line $EF$. Prove that $M$ lies on $BC$.
6 replies
cmtappu96
Dec 5, 2010
SomeonecoolLovesMaths
an hour ago
Good integer sequences
fattypiggy123   18
N an hour ago by Ilikeminecraft
Source: China TST Test 1 Day 2 Q4
Call a sequence of positive integers $\{a_n\}$ good if for any distinct positive integers $m,n$, one has
$$\gcd(m,n) \mid a_m^2 + a_n^2 \text{ and } \gcd(a_m,a_n) \mid m^2 + n^2.$$Call a positive integer $a$ to be $k$-good if there exists a good sequence such that $a_k = a$. Does there exists a $k$ such that there are exactly $2019$ $k$-good positive integers?
18 replies
fattypiggy123
Mar 11, 2019
Ilikeminecraft
an hour ago
Sum of lengths of each pair of opposite sides of q is equal
Amir Hossein   28
N an hour ago by Kempu33334
The feet of the perpendiculars from the intersection point of the diagonals of a convex cyclic quadrilateral to the sides form a quadrilateral $q$. Show that the sum of the lengths of each pair of opposite sides of $q$ is equal.
28 replies
Amir Hossein
Oct 4, 2011
Kempu33334
an hour ago
AB=AC if CF=BM (median is altitude) and <MBC=< FCA
parmenides51   3
N an hour ago by SomeonecoolLovesMaths
Source: 2007 Kyiv TST1 9.1 for Ukraine MO
An altitude $CF$ is drawn in an acute triangle $ABC$ and median $BM$, and it turned out that $CF=BM$ and $\angle MBC=\angle FCA$. Prove that $AB=AC$.
3 replies
parmenides51
Jun 28, 2022
SomeonecoolLovesMaths
an hour ago
Two circles, a tangent line and a parallel
Valentin Vornicu   108
N 2 hours ago by Kempu33334
Source: IMO 2000, Problem 1, IMO Shortlist 2000, G2
Two circles $ G_1$ and $ G_2$ intersect at two points $ M$ and $ N$. Let $ AB$ be the line tangent to these circles at $ A$ and $ B$, respectively, so that $ M$ lies closer to $ AB$ than $ N$. Let $ CD$ be the line parallel to $ AB$ and passing through the point $ M$, with $ C$ on $ G_1$ and $ D$ on $ G_2$. Lines $ AC$ and $ BD$ meet at $ E$; lines $ AN$ and $ CD$ meet at $ P$; lines $ BN$ and $ CD$ meet at $ Q$. Show that $ EP = EQ$.
108 replies
Valentin Vornicu
Oct 24, 2005
Kempu33334
2 hours ago
Parametrized functional equation
old_csk_mo   6
N 2 hours ago by maromex
Source: CAPS 2024 p5
Let $\alpha\neq0$ be a real number. Determine all functions $f:\mathbb R\to\mathbb R$ such that \[f\left(x^2+y^2\right)=f(x-y)f(x+y)+\alpha yf(y)\]holds for all $x, y\in\mathbb R.$
6 replies
old_csk_mo
Jul 4, 2024
maromex
2 hours ago
set with c+2a>3b
VicKmath7   51
N 2 hours ago by lpieleanu
Source: ISL 2021 A1
Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$.

Proposed by Dominik Burek and Tomasz Ciesla, Poland
51 replies
VicKmath7
Jul 12, 2022
lpieleanu
2 hours ago
Inequality with gcds and stuff
whatshisbucket   47
N 2 hours ago by MathematicalArceus
Source: 2017 ELMO #1
Let $a_1,a_2,\dots, a_n$ be positive integers with product $P,$ where $n$ is an odd positive integer. Prove that $$\gcd(a_1^n+P,a_2^n+P,\dots, a_n^n+P)\le 2\gcd(a_1,\dots, a_n)^n.$$
Proposed by Daniel Liu
47 replies
whatshisbucket
Jun 26, 2017
MathematicalArceus
2 hours ago
Rootiful sets
InternetPerson10   41
N 2 hours ago by lksb
Source: IMO 2019 SL N3
We say that a set $S$ of integers is rootiful if, for any positive integer $n$ and any $a_0, a_1, \cdots, a_n \in S$, all integer roots of the polynomial $a_0+a_1x+\cdots+a_nx^n$ are also in $S$. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers $a$ and $b$.
41 replies
InternetPerson10
Sep 22, 2020
lksb
2 hours ago
Combi Algorithm/PHP/..
CatalanThinker   1
N May 28, 2025 by CatalanThinker
Source: Olympiad_Combinatorics_by_Pranav_A_Sriram
5. [Czech and Slovak Republics 1997]
Each side and diagonal of a regular n-gon (n ≥ 3) is colored blue or green. A move consists of choosing a vertex and
switching the color of each segment incident to that vertex (from blue to green or vice versa). Prove that regardless of the initial coloring, it is possible to make the number of blue segments incident to each vertex even by following a sequence of moves. Also show that the final configuration obtained is uniquely determined by the initial coloring.
1 reply
CatalanThinker
May 28, 2025
CatalanThinker
May 28, 2025
Combi Algorithm/PHP/..
G H J
Source: Olympiad_Combinatorics_by_Pranav_A_Sriram
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CatalanThinker
13 posts
#1
Y by
5. [Czech and Slovak Republics 1997]
Each side and diagonal of a regular n-gon (n ≥ 3) is colored blue or green. A move consists of choosing a vertex and
switching the color of each segment incident to that vertex (from blue to green or vice versa). Prove that regardless of the initial coloring, it is possible to make the number of blue segments incident to each vertex even by following a sequence of moves. Also show that the final configuration obtained is uniquely determined by the initial coloring.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CatalanThinker
13 posts
#2
Y by
Any ideas?
Z K Y
N Quick Reply
G
H
=
a