Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Show that three lines concur
benjaminchew13   2
N a minute ago by benjaminchew13
Source: Revenge JOM 2025 P2
t $A B C$ be a triangle. $M$ is the midpoint of segment $B C$, and points $E$, $F$ are selected on sides $A B$, $A C$ respectively such that $E$, $F$, $M$ are collinear. The circumcircles $(A B C)$ and $(A E F)$ intersect at a point $P != A$. The circumcircle $(A P M)$ intersects line $B C$ again at a point $D != M$. Show that the lines $A D$, $E F$ and the tangent to $(A E F)$ at point $P$ concur.
2 replies
benjaminchew13
12 minutes ago
benjaminchew13
a minute ago
slightly easy NT fe
benjaminchew13   2
N 2 minutes ago by benjaminchew13
Source: Revenge JOM 2025 P1
Find all functions $f:\mathbb{N}\rightarrow\mathbb{N}$ such that $$f(a) + f(b) + f(c) | a^2 + af(b) + cf(a)$$for all $a, b, c\in\mathbb{N}$
2 replies
benjaminchew13
16 minutes ago
benjaminchew13
2 minutes ago
Cheesy's math casino
benjaminchew13   1
N 4 minutes ago by benjaminchew13
Source: Revenge JOM 2025 P4
There are $p$ people playing a game at Cheesy's math casino, where $p$ is an odd prime number. Let $n$ be a positive integer. A subset of length $s$ from the set of integers from $1$ to $n$ inclusive is randomly chosen, with an equal probability ($s <= n$ and is fixed). The winner of Cheesy's game is person $i$, if the sum of the chosen numbers are congruent to $i mod p$ for $0 <= i <= p - 1$.

For each $n$, find all values of $s$ such that no one will sue Cheesy for creating unfair games (i.e. all the winning outcomes are equally likely).
1 reply
1 viewing
benjaminchew13
10 minutes ago
benjaminchew13
4 minutes ago
2013 Japan MO Finals
parkjungmin   0
4 minutes ago
help me

we cad do it
0 replies
parkjungmin
4 minutes ago
0 replies
Square number
linkxink0603   4
N 4 hours ago by pooh123
Find m is positive interger such that m^4+3^m is square number
4 replies
linkxink0603
Yesterday at 11:20 AM
pooh123
4 hours ago
Inequalities
sqing   7
N 5 hours ago by sqing
Let $ a,b>0, a^2+ab+b^2 \geq 6  $. Prove that
$$a^4+ab+b^4\geq 10$$Let $ a,b>0, a^2+ab+b^2 \leq \sqrt{10}  $. Prove that
$$a^4+ab+b^4  \leq 10$$Let $ a,b>0,  a^2+ab+b^2 \geq \frac{15}{2}  $. Prove that
$$ a^4-ab+b^4\geq 10$$Let $ a,b>0,  a^2+ab+b^2 \leq \sqrt{10}  $. Prove that
$$-\frac{1}{8}\leq  a^4-ab+b^4\leq 10$$
7 replies
sqing
Thursday at 2:42 PM
sqing
5 hours ago
Compilation of functions problems
Saucepan_man02   2
N Today at 12:45 AM by Saucepan_man02
Could anyone post some handout/compilation of problems related to functions (difficulty similar to AIME/ARML/HMMT etc)?

Thanks..
2 replies
Saucepan_man02
May 7, 2025
Saucepan_man02
Today at 12:45 AM
How many triangles
Ecrin_eren   5
N Today at 12:10 AM by jasperE3


"Inside a triangle, 2025 points are placed, and each point is connected to the vertices of the smallest triangle that contains it. In the final state, how many small triangles are formed?"


5 replies
Ecrin_eren
May 2, 2025
jasperE3
Today at 12:10 AM
Triangle on a tetrahedron
vanstraelen   2
N Yesterday at 7:51 PM by ReticulatedPython

Given a regular tetrahedron $(A,BCD)$ with edges $l$.
Construct at the apex $A$ three perpendiculars to the three lateral faces.
Take a point on each perpendicular at a distance $l$ from the apex such that these three points lie above the apex.
Calculate the lenghts of the sides of the triangle.
2 replies
vanstraelen
Yesterday at 2:43 PM
ReticulatedPython
Yesterday at 7:51 PM
shadow of a cylinder, shadow of a cone
vanstraelen   2
N Yesterday at 6:33 PM by vanstraelen

a) Given is a right cylinder of height $2R$ and radius $R$.
The sun shines on this solid at an angle of $45^{\circ}$.
What is the area of the shadow that this solid casts on the plane of the botom base?

b) Given is a right cone of height $2R$ and radius $R$.
The sun shines on this solid at an angle of $45^{\circ}$.
What is the area of the shadow that this solid casts on the plane of the base?
2 replies
vanstraelen
Yesterday at 3:08 PM
vanstraelen
Yesterday at 6:33 PM
2023 Official Mock NAIME #15 f(f(f(x))) = f(f(x))
parmenides51   3
N Yesterday at 5:13 PM by jasperE3
How many non-bijective functions $f$ exist that satisfy $f(f(f(x))) = f(f(x))$ for all real $x$ and the domain of f is strictly within the set of $\{1,2,3,5,6,7,9\}$, the range being $\{1,2,4,6,7,8,9\}$?

Even though this is an AIME problem, a proof is mandatory for full credit. Constants must be ignored as we dont want an infinite number of solutions.
3 replies
parmenides51
Dec 4, 2023
jasperE3
Yesterday at 5:13 PM
Geometry
AlexCenteno2007   3
N Yesterday at 4:18 PM by AlexCenteno2007
Let ABC be an acute triangle and let D, E and F be the feet of the altitudes from A, B and C respectively. The straight line EF and the circumcircle of ABC intersect at P such that F is between E and P, the straight lines BP and DF intersect at Q. Show that if ED = EP then CQ and DP are parallel.
3 replies
AlexCenteno2007
Apr 28, 2025
AlexCenteno2007
Yesterday at 4:18 PM
Cube Sphere
vanstraelen   4
N Yesterday at 2:37 PM by pieMax2713

Given the cube $\left(\begin{array}{ll} EFGH \\ ABCD \end{array}\right)$ with edge $6$ cm.
Find the volume of the sphere passing through $A,B,C,D$ and tangent to the plane $(EFGH)$.
4 replies
vanstraelen
Yesterday at 1:10 PM
pieMax2713
Yesterday at 2:37 PM
Combinatorics
AlexCenteno2007   0
Yesterday at 2:05 PM
Adrian and Bertrand take turns as follows: Adrian starts with a pile of ($n\geq 3$) stones. On their turn, each player must divide a pile. The player who can make all piles have at most 2 stones wins. Depending on n, determine which player has a winning strategy.
0 replies
AlexCenteno2007
Yesterday at 2:05 PM
0 replies
Concurrent related to Neuberg cubic
TelvCohl   1
N Sep 25, 2019 by rodinos
Source: Own
Let $ P $ be a point lying on the Neuberg cubic of $ \triangle ABC $ and let $ O_a, $ $ O_b, $ $ O_c $ be the circumcenter of $ \triangle BPC, $ $ \triangle CPA, $ $ \triangle APB, $ respectively. Prove that the reflection of $ AP, $ $ BP, $ $ CP $ in $ AO_a, $ $ BO_b, $ $ CO_c, $ respectively are concurrent.
1 reply
TelvCohl
Dec 28, 2016
rodinos
Sep 25, 2019
Concurrent related to Neuberg cubic
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#1 • 7 Y
Y by baopbc, qzc, AmirKhusrau, amar_04, enhanced, Adventure10, Mango247
Let $ P $ be a point lying on the Neuberg cubic of $ \triangle ABC $ and let $ O_a, $ $ O_b, $ $ O_c $ be the circumcenter of $ \triangle BPC, $ $ \triangle CPA, $ $ \triangle APB, $ respectively. Prove that the reflection of $ AP, $ $ BP, $ $ CP $ in $ AO_a, $ $ BO_b, $ $ CO_c, $ respectively are concurrent.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rodinos
317 posts
#2 • 1 Y
Y by Adventure10
New triangle centers

https://groups.yahoo.com/neo/groups/Hyacinthos/conversations/messages/29538
Z K Y
N Quick Reply
G
H
=
a