Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Centrally symmetric polyhedron
genius_007   1
N 3 minutes ago by genius_007
Source: unknown
Does there exist a convex polyhedron with an odd number of sides, where each side is centrally symmetric?
1 reply
genius_007
May 28, 2025
genius_007
3 minutes ago
Reachable Strings
numbertheorist17   22
N 6 minutes ago by cj13609517288
Source: USA TSTST 2014, Problem 1
Let $\leftarrow$ denote the left arrow key on a standard keyboard. If one opens a text editor and types the keys "ab$\leftarrow$ cd $\leftarrow \leftarrow$ e $\leftarrow \leftarrow$ f", the result is "faecdb". We say that a string $B$ is reachable from a string $A$ if it is possible to insert some amount of $\leftarrow$'s in $A$, such that typing the resulting characters produces $B$. So, our example shows that "faecdb" is reachable from "abcdef".

Prove that for any two strings $A$ and $B$, $A$ is reachable from $B$ if and only if $B$ is reachable from $A$.
22 replies
numbertheorist17
Jul 16, 2014
cj13609517288
6 minutes ago
m-n and 2m+2n+1 are perfect squares
AnormalGUY   0
22 minutes ago
let m,n belongs to natural numbers , such that

2m^2+m=3n^2+n

then prove that m-n and 2m+2n+1 are perfect squares .also find the integral solution of 2m^2+m=3n^2+n
(i am newbie and didnt got the answer to this question in search so i asked .plz correct me if a problem exists)
0 replies
AnormalGUY
22 minutes ago
0 replies
Serbian selection contest for the IMO 2025 - P6
OgnjenTesic   17
N 23 minutes ago by math90
Source: Serbian selection contest for the IMO 2025
For an $n \times n$ table filled with natural numbers, we say it is a divisor table if:
- the numbers in the $i$-th row are exactly all the divisors of some natural number $r_i$,
- the numbers in the $j$-th column are exactly all the divisors of some natural number $c_j$,
- $r_i \ne r_j$ for every $i \ne j$.

A prime number $p$ is given. Determine the smallest natural number $n$, divisible by $p$, such that there exists an $n \times n$ divisor table, or prove that such $n$ does not exist.

Proposed by Pavle Martinović
17 replies
OgnjenTesic
May 22, 2025
math90
23 minutes ago
AMC changes
DPatrick   3
N Dec 2, 2010 by dragon96
Today the American Mathematics Competitions announced changes to the AMC10/12 - AIME - USA(J)MO series of contests for high school students.

There are two major changes:

1. The cutoff score to advance from the AMC10 to the AIME is still 120, but in the event that fewer than 2.5% of all students score 120 or higher, they will lower the cutoff score so that the top 2.5% of students advance. (In previous years this percentage was 1%.) (Also, no changes for advancement from AMC12 to AIME: it's still 100 or the top 5%.)

2. Students can qualify for the USAMO only by taking the AMC12. Students can qualify for the USAJMO only by taking the AMC10. If a student takes both the AMC10 and AMC12 and qualifies for both olympiads, he or she must take the USAMO.

Official rules are on the AMC's website. Discussion continues on our AMC forum.
3 replies
DPatrick
Dec 1, 2010
dragon96
Dec 2, 2010
No more topics!
Perpendicular to quadrilateral diagonal
cjquines0   56
N Mar 5, 2025 by EeEeRUT
Source: 2016 IMO Shortlist G6
Let $ABCD$ be a convex quadrilateral with $\angle ABC = \angle ADC < 90^{\circ}$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $E$ and $F$ respectively, and meet each other at point $P$. Let $M$ be the midpoint of $AC$ and let $\omega$ be the circumcircle of triangle $BPD$. Segments $BM$ and $DM$ intersect $\omega$ again at $X$ and $Y$ respectively. Denote by $Q$ the intersection point of lines $XE$ and $YF$. Prove that $PQ \perp AC$.
56 replies
cjquines0
Jul 19, 2017
EeEeRUT
Mar 5, 2025
Perpendicular to quadrilateral diagonal
G H J
G H BBookmark kLocked kLocked NReply
Source: 2016 IMO Shortlist G6
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cjquines0
510 posts
#1 • 8 Y
Y by matol.kz, tapir1729, NO_SQUARES, Adventure10, Mango247, Rounak_iitr, ohiorizzler1434, Retemoeg
Let $ABCD$ be a convex quadrilateral with $\angle ABC = \angle ADC < 90^{\circ}$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $E$ and $F$ respectively, and meet each other at point $P$. Let $M$ be the midpoint of $AC$ and let $\omega$ be the circumcircle of triangle $BPD$. Segments $BM$ and $DM$ intersect $\omega$ again at $X$ and $Y$ respectively. Denote by $Q$ the intersection point of lines $XE$ and $YF$. Prove that $PQ \perp AC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
v_Enhance
6882 posts
#2 • 23 Y
Y by matol.kz, CeuAzul, anantmudgal09, samuel, yayups, karitoshi, HolyMath, Modesti, v4913, Hoju, Pluto04, mijail, math31415926535, michaelwenquan, HamstPan38825, nguyenducmanh2705, Adventure10, Mango247, VIATON, Rounak_iitr, bhan2025, ohiorizzler1434, Sedro
My proof proceeds in six steps. The first two steps set the stage by incorporating all the angle conditions. By the fourth step we show that $Q$ lies on $\omega$ even if $M$ is arbitrary on $\overline{AC}$. Step 5 uses the midpoint condition for the first time by projecting $(AC;M\infty)$, and the sixth steps solves what is essentially a completely projective problem.



[asy] size(12cm); draw(unitcircle, red); pair P = dir(0); pair R = dir(180); pair K = dir(75); pair L = conj(K); pair B = dir(65); pair D = dir(-58); pair A = extension(K, D, B, L); pair C = extension(K, B, D, L); pair T = 2/(K+L); draw(A--B--C--D--cycle, orange); draw(P--B--K--A--L--D--P, orange); draw(K--T--L, red); draw(A--T, paleblue); pair E = extension(B, P, A, C); pair F = extension(D, P, A, C); draw(F--P, orange); pair M = midpoint(A--C); pair O = midpoint(P--R); pair X = -B+2*foot(O, B, M); pair Y = -D+2*foot(O, D, M); draw(B--M--D, yellow); draw(B--Y, yellow+dashed); draw(D--X, yellow+dashed); pair Q = extension(X, E, Y, F); draw(X--Q, brown+dotted); draw(Y--F, brown+dotted); pair Z = R*Q/B; draw(Z--K--X--L--cycle, paleblue); draw(Z--T, paleblue); draw(Z--B, dashed+paleblue); draw(T--R--Q, paleblue);

dot("$P$", P, dir(P)); dot("$R$", R, dir(R)); dot("$K$", K, dir(K)); dot("$L$", L, dir(L)); dot("$B$", B, dir(B)); dot("$D$", D, dir(D)); dot("$A$", A, dir(A)); dot("$C$", C, dir(C)); dot("$T$", T, dir(T)); dot("$E$", E, dir(E)); dot("$F$", F, dir(F)); dot("$M$", M, dir(M)); dot("$X$", X, dir(X)); dot("$Y$", Y, dir(Y)); dot("$Q$", Q, dir(Q)); dot("$Z$", Z, dir(Z));

/* TSQ Source:

!size(12cm); unitcircle 0.1 yellow / red P = dir 0 R = dir 180 K = dir 75 L = conj K B = dir 65 D = dir -58 A = extension K D B L C = extension K B D L T = 2/(K+L) A--B--C--D--cycle 0.1 lightred / orange P--B--K--A--L--D--P orange K--T--L red A--T paleblue E = extension B P A C F = extension D P A C F--P orange M = midpoint A--C O := midpoint P--R X = -B+2*foot O B M Y = -D+2*foot O D M B--M--D yellow B--Y yellow dashed D--X yellow dashed Q = extension X E Y F X--Q brown dotted Y--F brown dotted Z = R*Q/B Z--K--X--L--cycle paleblue Z--T paleblue Z--B dashed paleblue T--R--Q paleblue

*/ [/asy]



Step 1: Observe that $K = \overline{BC} \cap \overline{AD}$ lies on $\omega$ by all the given angle conditions. Similarly, $L = \overline{BA} \cap \overline{CD}$ lies on $\omega$ too, and actually $P$ is the arc midpoint of $\widehat{KL}$.

Step 2: Let $T = \overline{KK} \cap \overline{LL}$, and $S = \overline{XX} \cap \overline{YY}$ (not pictured). Then $\overline{ACST}$ are collinear by Brokard Theorem on $LKBD$ and $BDYX$.

Step 3: Again by Brokard Theorem on $DBXY$, we find that $\overline{XD} \cap \overline{BY}$, $S$ and $M$ are collinear; in other words, $\overline{XD} \cap \overline{BY}$ lies on $\overline{AC}$.

Step 4: By the converse of Pascal theorem on $BPDXQY$, we find that $Q$ lies on $\omega$ (since we already know $\overline{XD} \cap \overline{BY}$, $E$, $F$ collinear).

Step 5: Let $Z$ be the point on $\omega$ such that $\overline{ZB} \parallel \overline{AC}$. Then $-1 = (AC;M\infty) = (LK;XZ)_\omega$. Thus $T \in \overline{XZ}$.

Step 6: Introduce $R$ the antipode of $P$ (so $\overline{PR} \cap \overline{XZ} = T$). This is motivated because now the problem is ``completely projective'': we just need to check $\overline{BZ}$, $\overline{QR}$, $\overline{ACT}$ are parallel. Indeed, this follows by Pascal on $ZBPRQX$.

Remark: Motivational remarks: I found the steps in the order 4 3 1 2 5 6. You basically have to realize $Q$ lies on the circle; then the obvious Pascal reverse-engineers to tell you about $DBXY$, which leads naturally to discovery of $K$ and $L$. In fact, I found $K$ and $L$ because I was about to try complex bashing.

Once $Q$ is on the circle, you can focus on just the upper half of the diagram (ignoring $D$, $Y$, $F$ and concentrating only $B$, $X$, $E$). Adding $Z$ eliminates the midpoint as usual with harmonic arguments.

Then the addition of point $R$ does two things: it changes perpendicularity to $\overline{BZ} \parallel \overline{AC} \parallel \overline{RQ}$, and it lets one just define $T = \overline{ZX} \cap \overline{PR}$, thus we can ignore $KLT$. At that point the problem is completely projective.
This post has been edited 1 time. Last edited by v_Enhance, Dec 2, 2020, 2:13 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EulerMacaroni
851 posts
#3 • 1 Y
Y by Adventure10
Let $Y'\equiv DM\cap \odot(ABC)$ such that $Y$ lies on the arc opposite $B$; I claim that $Y'\equiv Y$. Compute $$\angle BPD=\angle BY'D\iff 2\pi-\angle B-\angle BCD=2\pi-\angle CBY'-\angle BCD-\angle CDM$$$$\iff \angle B=\angle CBY'+\angle CDM \iff \angle ADY'=\angle CAY'$$which is obvious by reflection about $M$. Analogously, $X$ lies on $\odot(ADC)$; we therefore notice that $X$ and $Y$ are the $B$ and $D$ HM points in $\triangle ABC$ and $\triangle ADC$, so $B$ and $D$ are the $X$ and $Y$ HM points in $\triangle CXA$ and $\triangle CYA$ and hence by analogy $Q \in \odot(BPD)$. Let $B'$ be the reflection of $B$ over $AC$; notice that quadrilateral $BXEB'$ is cyclic on the $B$-Apollonius circle in $AC$, so $$\angle BPQ=\pi-\angle BXE=\angle B'BE=\frac{\pi-\angle BEB'}{2}=\frac{\pi}{2}-\angle BEC$$as desired.
This post has been edited 2 times. Last edited by EulerMacaroni, Jul 20, 2017, 9:14 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1980 posts
#4 • 8 Y
Y by biomathematics, Yamcha, Pluto04, GuvercinciHoca, michaelwenquan, Adventure10, Funcshun840, Kingsbane2139
For anyone who has seen HM points, this is a walk in the park.
cjquines0 wrote:
Let $ABCD$ be a convex quadrilateral with $\angle ABC = \angle ADC < 90^{\circ}$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $E$ and $F$ respectively, and meet each other at point $P$. Let $M$ be the midpoint of $AC$ and let $\omega$ be the circumcircle of triangle $BPD$. Segments $BM$ and $DM$ intersect $\omega$ again at $X$ and $Y$ respectively. Denote by $Q$ the intersection point of lines $XE$ and $YF$. Prove that $PQ \perp AC$.

Let $T_1=EX \cap PR$ and $T_2=FY \cap PR$ where $R$ is a point on $AC$ such that $PR \perp AC$.

Claim 1: $X$ is the HM point corresponding to $B$ in triangle $ABC$.

(Proof) Let $ABCB_1$ be a parallelogram; $L$ be midpoint of minor arc $AC$ in $(ADC)$. Note that $$\measuredangle DXM=\measuredangle BPL=\measuredangle DLB_1,$$so $D, X, L, B_1$ are concyclic, just as we desired. $\blacksquare$

Claim 2: In any triangle $ABC$, let $X$ be the HM point opposite $B$; $M$ the midpoint of $AC$ and $E$ the foot of $B$-internal bisector. Point $E'$ lies on ray $MB$ such that $EE' \perp AC$. Then $(XM, E'B)$ depends only on $\measuredangle ABC$.

(Proof) Let $N$ be midpoint of arc $ABC$, $L$ the midpoint of minor arc $AC$ in $(ADC)$. Notice that $$(XM, E'B) \overset{E}{=} (NM, \infty L)$$where projection is preceded by reflection of the pencil in line $EE'$. $\blacksquare$

To conclude, consider $(XM, E'B) \overset{E}{=} (T_1R, \infty P)$ and $(YM, F'D)\overset{F}{=}(T_2R, \infty P)$; hence, $\boxed{T_1=T_2},$ as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Lsway
71 posts
#5 • 3 Y
Y by naw.ngs, AlastorMoody, Adventure10
Step 1
Step 2
Step 3
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Anzoteh
126 posts
#6 • 2 Y
Y by Adventure10, Mango247
Let $\omega_1$ be the circumcircle of $ABC$ and $\omega_2$ the circumcircle of $ADC$, then these two circles are symmetric w.r.t. $AC$.
Also notice that $BP$ passes through $M_1$, the midpoint of arc $AC$ of $\omega_1$ not containing $B$, and $DP$ passes through $M_2$, the midpoint of arc $AC$ of $\omega_2$ not containing $D$.

We first start with a preliminary observation: $X$ lies on $\omega_2$ and $Y$ lies on $\omega_1$. W.L.O.G. for this section we assume that $AB\le AC$. Indeed, let $X'$ be on $BM$ satisfying $MX'\cdot MB=MA^2=MC^2$. Then $\angle X'AC=\angle MBA$ and $\angle X'CA=\angle MBC$. Thus $\angle ADC=\angle ABC=\angle MBA+\angle MBC=\angle X'AC+\angle X'CA=\pi - \angle AX'C$, so $X'$ lie on $\omega_2$. In addition, let $BM$ intersect $\omega_1$ again at $X''$, then $X'$ and $X''$ are symmetrical w.r.t. $AC$. Combining with the fact that $M_1$ and $M_2$ are also symmetrical w.r.t. $AC$ (being the midpoint of arc) we have $X'M_2=X''M_1$. Knowing that the two circles have the same radius further allows us to assert $\angle X'BP=\angle X''BM_1=\angle X'DM_2=\angle X'DP$, showing that $D, B, P, X'$ cyclic hence $X'=X$. Similarly, $Y$ lies on $\omega_1$.

Next, let $N_1$ be diametrically opposite $M_1$ w.r.t. $\omega_1$ and define similarly for $N_2$. We claim that $XE$ passes through $N_2$ by claiming that $XE$ is the internal angle bisector of $\angle AXC$. Indeed, by angle bisector theorem we have $\frac{AE}{EC}=\frac{AB}{BC}$. Invoking our $X''$ from the previous section (i.e. the other intersection of $BM$ and $\omega_1$) gives $AXCX''$ parallelogram. Now invoking a little bit more trigonometric bashing we have $1=\frac{AM}{CM}=\frac{AB}{BC}\cdot\frac{\sin\angle ABM}{\sin\angle CBM}=\frac{AB}{BC}\cdot\frac{AX''}{CX''}=\frac{AB}{BC}\cdot\frac{CX}{AX},$ so $\frac{AX}{CX}=\frac{AB}{BC}=\frac{AE}{EC}$, and the conclusion follows by the angle bisector theorem. Analogously, $YF$ passes through $N_1$.

Finally, considering triangle $PEF$, and letting the perpendicular from $P$ to reach $AC$ at $P_1$ we have (considering signed length) $\frac{EP_1}{FP_1}=\frac{\cot\angle FEP}{\cot\angle EFP}$. Similarly if letting perpendcular from $Q$ to reach AC at $Q_1$ we have $\frac{EQ_1}{FQ_1}=\frac{\cot\angle FEQ}{\cot\angle EFQ}$. Now $\cot\angle FEP=\cot\angle MEM_1=\frac{MM_1}{EM}$, $\cot\angle EFP=\cot\angle MFM_2=\frac{MM_2}{FM}$. Considering $MM_2=MM_1$ we have $\frac{\cot\angle FEP}{\cot\angle EFP}=\frac{FM}{EM}$. Analogously, $\cot\angle FEQ=\cot\angle FEQ=\cot\angle MEN_2=\frac{MN_2}{EM}$, and $\cot\angle EFQ=\cot\angle N_1FM=\frac{MN_1}{FM}$. Therefore we have $\frac{\cot\angle FEQ}{\cot\angle EFQ}=\frac{FM}{EM}$ since again it is not hard to verify that $MN_2=MN_1$. (For signed convention we can say that $ME<0$ if it's nearer to $A$ than $B$, and $>0$ otherwise). Therefore, $\frac{EP_1}{FP_1}=\frac{EQ_1}{FQ_1}$, so $P_1\equiv Q_1$ and the two perpendicular lines coincide. (Sorry for the trigo-heavy proof).
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AngleChasingXD
109 posts
#7 • 3 Y
Y by GGPiku, Adventure10, Mango247
I would like to present my proof.

Let $AB\cap CD= \{J\}$, $BC\cap AD=\{K\}$. The condition of the problem implies that $BDKJ$ is cyclic and denote its circumcircle by $\gamma$. The exterior angle bisectors of $\angle JBK$ and $\angle LDK$ both pass through the midpoint of the arc $\overarc{JBDK}$. As their intersection is $P$, we conclude that $P$ is the midpoint of the arc $\overarc{JBDK}~~~(1)$. Keep this in mind.

Denote by $AA'$ and $AA"$ the tangents from $A$ to $\gamma$. Let $M'$ the midpoint of $AA'$ and $M"$ the midpoint of $AA"$. It is well-known that $M'M"$ is the radical axis of $\gamma$ and the degenerated circle at $A$. Also, $A'A"$ is the polar of $A$ WRT $\gamma$, and as $C$ belongs to this polar (well-known), we get that $C\in A'A"$. As $M$ is the midpoint of $AC$, we find out that $M$ lies on $M'M"$, hence $M$ is on the radical axis of the degenerated circle at $A$ and $\gamma$. Hence $MA^2=MC^2=MX\cdot MB=MY\cdot MD$. Using this, we arrive at
$\Delta MXC \sim \Delta MCB$
$\Delta MYC \sim \Delta MCD$
$\Delta MXA \sim \Delta MAB$
$\Delta MYA \sim \Delta MAD$.
Puting al these together, we get that $\frac{AX}{XC}=\frac{AB}{BC}$, and also that $\frac{AY}{YC}=\frac{AD}{DC}$. Also we get that $m(\angle AXC)=m(\angle AYC)=180^o-m(\angle ABC)~~(2)$. Therefore $XE$ and $YF$ are the angle bisectors of $\angle AXC$ and $\angle AYC$.

Here comes my favourite part of the problem:
Note that the fact that $\angle ABC=\angle ADC$ is enough, that is, it is not used at all that they are less that $90^o$. By replacing $ABCD$ with $AXCY$, $E$ and $F$ remain at their places, $P$ becomes $Q$, and $M$ remains at its place. $X$ becomes $B$ and $B$ becomes $X$. $Y$ becomes $D$ and $D$ becomes $Y$.

Denote $AX\cap CY=\{V\}$ and $AY\cap CX=\{U\}$. With all the observations above, doing everything we did to $ABCD$ the same for $AXCY$, we get that $U$ and $V$ lie on $\gamma$. Similar to (1), $Q$ is the midpoint of the arc $\overarc{VBDU}$.
Acording to (2), we have that $m(\angle JBK)+m(\angle UXV)=180^o$, therefore $JK=UV$, or equivalently written $JV\parallel KU$.
Now we have a trapezoid $JVUK$ inscribed in $\gamma$, $P$ being the midpoint of $\overarc{JK}$ and $Q$ the midpoint of $\overarc{VJU}$. Denote by $O$ the center of $\gamma$. Note that the common bisector line of the segmente $JV$ and $VK$ is, actually, the external angle bisector of $\angle POQ$. As $OP=PQ$, we have that $PQ\perp KU$. (3)

The final step: Let $\{W\}=BC\cap AY$. $ABCY$ is cyclic, therefore $WY\cdot WA=WC\cdot WB$.
$BYKU$ is cyclic, hence $WU\cdot WY=WB\cdot WK$. From these two relations we get $\frac{WC}{WK}=\frac{WA}{WU}$, thus $AC\parallel KU$. From (3), we get that $PQ\perp AC$, exactly what we wanted. :)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
yayups
1614 posts
#8 • 1 Y
Y by Adventure10
[asy]
unitsize(0.16inches);
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -22.544024968129566, xmax = 27.465755540420506, ymin = -32.784146091366274, ymax = 28.47782984915346;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((3.4596513969356657,4.55499562893679)--(-10.608546536103033,-2.4244448307545143), linewidth(2) + wrwrwr); 
draw((-10.608546536103033,-2.4244448307545143)--(3.657558052913712,-16.274678150667455), linewidth(2) + wrwrwr); 
draw((3.4596513969356657,4.55499562893679)--(3.657558052913712,-16.274678150667455), linewidth(2) + wrwrwr); 
draw((3.4596513969356657,4.55499562893679)--(9.200195538289595,5.045956314566677), linewidth(2) + wrwrwr); 
draw((9.200195538289595,5.045956314566677)--(3.657558052913712,-16.274678150667455), linewidth(2) + wrwrwr); 
draw((-10.608546536103033,-2.4244448307545143)--(3.5469846385830346,-4.636827276866991), linewidth(2) + wrwrwr); 
draw((3.5006807694596165,0.23665453610085424)--(9.200195538289595,5.045956314566677), linewidth(2) + wrwrwr); 
draw((3.5006807694596165,0.23665453610085424)--(-1.3650775450177906,-3.8691160539462173), linewidth(2) + wrwrwr); 
draw(circle((-3.946454423989982,9.908080799937078), 14.016941882662707), linewidth(2) + wrwrwr); 
draw((-10.608546536103033,-2.4244448307545143)--(3.558604724924689,-5.859841260865332), linewidth(2) + wrwrwr); 
draw((9.200195538289595,5.045956314566677)--(3.558604724924689,-5.859841260865332), linewidth(2) + wrwrwr); 
draw((3.4596513969356657,4.55499562893679)--(3.2947608435600477,21.909724903598224), linewidth(2) + wrwrwr); 
draw((3.4596513969356657,4.55499562893679)--(9.90366577557506,7.7519661926992285), linewidth(2) + wrwrwr); 
draw((9.90366577557506,7.7519661926992285)--(9.200195538289595,5.045956314566677), linewidth(2) + wrwrwr); 
draw((3.4596513969356657,4.55499562893679)--(-16.07654901172654,2.8841598839167206), linewidth(2) + wrwrwr); 
draw((-16.07654901172654,2.8841598839167206)--(-10.608546536103033,-2.4244448307545143), linewidth(2) + wrwrwr); 
draw((-16.07654901172654,2.8841598839167206)--(22.765729294890875,10.16187829142016), linewidth(2) + wrwrwr); 
draw((22.765729294890875,10.16187829142016)--(-10.608546536103033,-2.4244448307545143), linewidth(2) + wrwrwr); 
draw((22.765729294890875,10.16187829142016)--(3.2947608435600477,21.909724903598224), linewidth(2) + wrwrwr); 
draw((22.765729294890875,10.16187829142016)--(3.5214927742155853,-1.9538087791627707), linewidth(2) + wrwrwr); 
 /* dots and labels */
dot((3.4596513969356657,4.55499562893679),dotstyle); 
label("$A$", (3.627760164678306,4.973234998505071), NE * labelscalefactor); 
dot((-10.608546536103033,-2.4244448307545143),dotstyle); 
label("$B$", (-11.708572524610382,-3.2783780873608515), NE * labelscalefactor); 
dot((3.657558052913712,-16.274678150667455),dotstyle); 
label("$C$", (4.419581689397016,-15.905846597549612), NE * labelscalefactor); 
dot((9.200195538289595,5.045956314566677),dotstyle); 
label("$D$", (9.378884923161564,5.473332761284825), NE * labelscalefactor); 
dot((3.5469846385830346,-4.636827276866991),linewidth(4pt) + dotstyle); 
label("$E$", (4.002833518492432,-4.903695816395048), NE * labelscalefactor); 
dot((3.5006807694596165,0.23665453610085424),linewidth(4pt) + dotstyle); 
label("$F$", (2.7109141886882213,0.30565587922737786), NE * labelscalefactor); 
dot((-1.3650775450177906,-3.8691160539462173),linewidth(4pt) + dotstyle); 
label("$P$", (-1.9566653254431188,-2.9866543924059954), NE * labelscalefactor); 
dot((3.558604724924689,-5.859841260865332),linewidth(4pt) + dotstyle); 
label("$M$", (4.002833518492432,-6.445663918299286), NE * labelscalefactor); 
dot((-3.673206078366119,-4.106197457738476),linewidth(4pt) + dotstyle); 
label("$X$", (-3.581983191970996,-5.0287202570899865), NE * labelscalefactor); 
dot((7.617876917278405,1.98716542535431),linewidth(4pt) + dotstyle); 
label("$Y$", (6.795046263553144,2.0143232353915335), NE * labelscalefactor); 
dot((-6.265589433796959,-3.915676740913798),linewidth(4pt) + dotstyle); 
label("$Q$", (-6.457545571212625,-4.903695816395048), NE * labelscalefactor); 
dot((22.765729294890875,10.16187829142016),linewidth(4pt) + dotstyle); 
label("$G$", (22.21472858702275,10.891058524732147), NE * labelscalefactor); 
dot((3.5214927742155853,-1.9538087791627707),linewidth(4pt) + dotstyle); 
label("$H$", (3.6694349817687644,-1.611385544761675), NE * labelscalefactor); 
dot((3.2947608435600477,21.909724903598224),linewidth(4pt) + dotstyle); 
label("$Z$", (3.4610608963164724,22.226607814406545), NE * labelscalefactor); 
dot((-16.07654901172654,2.8841598839167206),linewidth(4pt) + dotstyle); 
label("$I$", (-15.917729050746681,3.2228928287759366), NE * labelscalefactor); 
dot((9.90366577557506,7.7519661926992285),linewidth(4pt) + dotstyle); 
label("$J$", (10.087356813699357,8.098846015878527), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Let $I=BC\cap \omega$ and $J=CD\cap\omega$. The first claim is that $I,A,D$ and $J,A,B$ are collinear. Note that
\[\angle PDI = \pi-\angle PBI = \angle PBC = \angle PDA,\]so $I,A,D$ collinear. Incidentally, $\angle PDI=\angle PBJ$, so $P$ is the midpoint of arc $\widehat{IJ}$. Let $G=IJ\cap BD$. By Brokard on $IJDB$, we have that $AC$ is the polar of $G$, so $GZ$ and $GH$ are tangent to $\omega$, where $Z$ and $H$ are the intersections of $AC$ with $\omega$. By Brokard on $BDYX$, $G'=BD\cap XY$ is on the polar of $M$. But by La'Hire, $G$ is on the polar of $M$, and $G\in BD$, so $G=G'$, so $G,X,Y$ are collinear. Also, we see that (by Brokard on the same quadrilateral), that $BY\cap DX$ is on the polar of $G$, so $BY\cap DX\in AC$. Thus, by the converse Pascal on $BPDXQY$, we have that $Q\in\omega$.

We claim that $X$ is the $B$-HM point of $ABC$. Let $X'$ be the HM point. We know that $(X'AB)$ is tangent to $AC$, and that $\angle AX'C=\pi-\angle ABC$ (its on $ARC$ where $R$ is the orthocenter of $ABC$), so $X'ADC$ is cyclic. Thus,
\begin{align*}
\angle BX'D&=\angle BX'A+\angle AX'D\\ &= \pi-\angle BAC + \angle ACD\\ &= \pi-\angle BAC + (\pi-\angle CAD-\angle ADC)\\&=2\pi-\angle BAD-\angle ADC\\&=\angle BPD,
\end{align*}so $X'$ lies on $\omega$, so $X'=\omega\cap AM=X$, as desired.

[asy]
unitsize(0.45inches);
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -12.550513472304992, xmax = 11.10568598292777, ymin = -4.963818860356124, ymax = 10.858184671390404;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((-3.1720410998173945,1.333574927567185)--(-1.9357055767518994,9.033559325606662), linewidth(2) + wrwrwr); 
draw((-1.9357055767518994,9.033559325606662)--(-11.9131501488594,0.8997729896494681), linewidth(2) + wrwrwr); 
draw((-11.9131501488594,0.8997729896494681)--(-3.1720410998173945,1.333574927567185), linewidth(2) + wrwrwr); 
draw((-6.469766309168775,1.1699161082445362)--(-1.9357055767518994,9.033559325606662), linewidth(2) + wrwrwr); 
draw(circle((-1.8111190256771401,4.210792562893538), 4.82437571673674), linewidth(2) + wrwrwr); 
draw((-6.469766309168775,1.1699161082445362)--(-6.255141867596467,6.0883606806294575), linewidth(2) + wrwrwr); 
draw((-6.047403865818704,1.9024399448072322)--(-6.255141867596467,6.0883606806294575), linewidth(2) + wrwrwr); 
draw(circle((-3.369607813653483,5.3145442113644545), 3.9858686688039966), linewidth(2) + wrwrwr); 
 /* dots and labels */
dot((-3.1720410998173945,1.333574927567185),dotstyle); 
label("$A$", (-2.9958666793473454,1.01167567736174), NE * labelscalefactor); 
dot((-1.9357055767518994,9.033559325606662),dotstyle); 
label("$B$", (-1.874501380495403,9.183817307351209), NE * labelscalefactor); 
dot((-11.9131501488594,0.8997729896494681),dotstyle); 
label("$C$", (-12.120400754937124,0.42795127521963494), NE * labelscalefactor); 
dot((-6.4017999351230825,2.7274686455080905),linewidth(4pt) + dotstyle); 
label("$X$", (-6.851519967180737,2.7014042098783593), NE * labelscalefactor); 
dot((-6.469766309168775,1.1699161082445362),linewidth(4pt) + dotstyle); 
label("$E$", (-6.406046081335445,1.2881767099553685), NE * labelscalefactor); 
dot((-5.591445684467464,1.2135052211329385),dotstyle); 
label("$H$", (-5.5304594781222844,1.3649825523424877), NE * labelscalefactor); 
dot((-6.047403865818704,1.9024399448072322),linewidth(4pt) + dotstyle); 
label("$P$", (-5.991294532445,2.0255127968717117), E * labelscalefactor); 
dot((-6.255141867596467,6.0883606806294575),linewidth(4pt) + dotstyle); 
label("$Q$", (-6.190989722651511,6.203750622730989), NW * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Note that $X$ lies on the $B$-appolonius circle of ABC, so since $E$ is on it too and $EA$ passes through its center, we see $\angle BXE=\pi/2+\angle BEA$. But $\angle BXE=\angle QPE$, so $\angle QPE = \pi/2+\angle PEA$, so $PQ\perp AC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_pi_rate
1218 posts
#9 • 2 Y
Y by Adventure10, Mango247
Here's my solution (in the order I found it): By an easy angle chase, we get that $U=AB \cap CD$ and $V=AD \cap BC$ lie on $\omega$. We forget about the condition that $M$ is the midpoint of $AC$ for some time, and define points $X,Y,Q$ similarly for any arbitrary point $M$ on $AC$. We claim that in fact $Q$ lies on $\omega$. Animate $M$ on $AC$. Then $M \rightarrow X \rightarrow XE \cap \omega$ and $M \rightarrow Y \rightarrow YF \cap \omega$ are projective maps. Thus, it suffices to show our claim for three positions of $M$. When $M=A$, we get that $X=U,Y=V$, and so we wish to show that $UE$ and $VF$ meet on $\omega$. Let $UE \cap \omega=Q'$. Then the result follows by Pascal on $UQ'VBPD$. Similarly, we can show the claim to be true for $M=C$. And, when $M=AC \cap \omega$, we have $X=Y=M$, which directly gives $Q \in \omega$. Thus, our claim is true.

Return to the given problem (i.e. when $M$ is the midpoint of $AC$). Let $P'$ and $Q'$ be the antipodes of $P$ and $Q$ in $\omega$. Then we wish to show that $AC,P'Q,PQ'$ are concurrent. Applying Pascal on $XQ'PBP'Q$, we see that this is equivalent to proving that $T=XQ' \cap BP'$ lies on $AC$. Let $BP' \cap AC=T'$. Then, as $\measuredangle EBT'=90^{\circ}$, so $\odot (EBT')$ is the $B$-Apollonius circle of $\triangle ABC$. Also, $\measuredangle EXT=90^{\circ}=\measuredangle EBT$, which gives that $EBXT$ is cyclic. Thus, for proving $T=T'$, it suffices to show that $\odot (BEX)$ is the $B$-Apollonius circle of $\triangle ABC$. As $X$ lies on the $B$-median of this triangle, so our problem is reduced to showing that $X$ is the $B$-Humpty point of $\triangle ABC$. However, it is well known that $MA^2=MC^2=MB \cdot MX$, i.e. $AC$ is tangent to $\odot (ABX)$ and $\odot (BCX)$, which is how we define Humpty points in the first place :D. Hence, done. $\blacksquare$

EDIT: $400^{\text{th}}$ post on HSO :showoff:
This post has been edited 2 times. Last edited by math_pi_rate, Feb 22, 2019, 12:40 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ayan.nmath
643 posts
#10 • 5 Y
Y by Kayak, AlastorMoody, Pluto04, Adventure10, Funcshun840
2016 IMO Shortlist G6 wrote:
Let $ABCD$ be a convex quadrilateral with $\angle ABC = \angle ADC < 90^{\circ}$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $E$ and $F$ respectively, and meet each other at point $P$. Let $M$ be the midpoint of $AC$ and let $\omega$ be the circumcircle of triangle $BPD$. Segments $BM$ and $DM$ intersect $\omega$ again at $X$ and $Y$ respectively. Denote by $Q$ the intersection point of lines $XE$ and $YF$. Prove that $PQ \perp AC$.

Solution with Kayak :

We assume that $ABCD$ is not a parallelogram. Let $S=AD\cap BC,~R=AB\cap CD,~L=AX\cap CY,~ K=AY\cap XC$ and $\{U,V\}=AC\cap\omega$ as shown in the diagram below.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -17.370032730607846, xmax = 6.139541560852985, ymin = -8.950203944896286, ymax = 7.400745648818856;  /* image dimensions */
pen qqffff = rgb(0,1,1); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((-5.8,-0.08)--(2,0.5), linewidth(0.4)); 
draw((-6.16,3.88)--(-5.8,-0.08), linewidth(0.4)); 
draw((-5.8,-0.08)--(-4.450656162658686,-5.33024171139331), linewidth(0.4)); 
draw((-4.450656162658686,-5.33024171139331)--(2,0.5), linewidth(0.4)); 
draw((2,0.5)--(-6.16,3.88), linewidth(0.4)); 
draw(circle((-8.764650673685598,-1.3671421988830121), 5.858046294391133), linewidth(0.8) + qqffff); 
draw((-6.16,3.88)--(-2.980235593158234,-0.44126501296832527), linewidth(0.4)); 
draw((-4.450656162658686,-5.33024171139331)--(-2.8045901413496854,0.14273560487399775), linewidth(0.4)); 
draw((-6.16,3.88)--(-1.9,0.21), linewidth(0.4)); 
draw((-1.9,0.21)--(-4.450656162658686,-5.33024171139331), linewidth(0.4)); 
draw((-2.9069134899946403,-1.4273208830994124)--(-3.9607235462495836,1.9853181724732336), linewidth(0.4)); 
draw((-2.9069134899946403,-1.4273208830994124)--(-2.8045901413496854,0.14273560487399775), linewidth(0.4)); 
draw((-2.9486521304059456,-2.0677614476898487)--(-2.9069134899946403,-1.4273208830994124), linewidth(0.4)); 
draw((-5.8,-0.08)--(-14.58832583745327,-0.7334908956054996), linewidth(0.4)); 
draw((-3.9607235462495836,1.9853181724732336)--(-4.450656162658686,-5.33024171139331), linewidth(0.4) + wrwrwr); 
draw((-2.9486521304059456,-2.0677614476898487)--(-6.16,3.88), linewidth(0.4) + wrwrwr); 
draw((2,0.5)--(-11.433793812647506,3.8474892637385096), linewidth(0.4)); 
draw((-2.9486521304059456,-2.0677614476898487)--(-11.433793812647506,3.8474892637385096), linewidth(0.4)); 
draw((-11.540362797522098,-6.525836664813006)--(-3.9607235462495836,1.9853181724732336), linewidth(0.4)); 
draw((-11.540362797522098,-6.525836664813006)--(2,0.5), linewidth(0.4)); 
draw((-5.8,-0.08)--(-6.896106866781368,4.184907010995224), linewidth(0.4)); 
draw((-6.16,3.88)--(-6.896106866781368,4.184907010995224), linewidth(0.4)); 
draw((-5.8,-0.08)--(-5.256493221081515,-6.058574568103326), linewidth(0.4)); 
draw((-5.256493221081515,-6.058574568103326)--(-4.450656162658686,-5.33024171139331), linewidth(0.4)); 
 /* dots and labels */
dot((-5.8,-0.08),linewidth(2pt) + dotstyle); 
label("$A$", (-5.716930594788596,-0.0019230727138700656), NE * labelscalefactor); 
dot((-6.16,3.88),linewidth(2pt) + dotstyle); 
label("$B$", (-6.082996630468782,3.9637923138215188), NE * labelscalefactor); 
dot((2,0.5),linewidth(2pt) + dotstyle); 
label("$C$", (2.0721411644064722,0.5878499847708801), NE * labelscalefactor); 
dot((-4.450656162658686,-5.33024171139331),linewidth(2pt) + dotstyle); 
label("$D$", (-4.374688463961247,-5.248869584129923), NE * labelscalefactor); 
dot((-3.37856160483175,0.10005567553815194),linewidth(2pt) + dotstyle); 
label("$E$", (-3.7968273589029216,0.1811099451262248), NE * labelscalefactor); 
dot((-2.8045901413496854,0.14273560487399775),linewidth(2pt) + dotstyle); 
label("$F$", (-2.7273913034004105,0.22178394909069035), NE * labelscalefactor); 
dot((-2.980235593158234,-0.44126501296832527),linewidth(2pt) + dotstyle); 
label("$P$", (-2.890087319258271,-0.36798910839405985), NE * labelscalefactor); 
dot((-1.9,0.21),linewidth(2pt) + dotstyle); 
label("$M$", (-1.8122262141999455,0.2827949550373886), NE * labelscalefactor); 
dot((-3.9607235462495836,1.9853181724732336),linewidth(2pt) + dotstyle); 
label("$X$", (-3.8866004163876657,2.0724511294738717), NE * labelscalefactor); 
dot((-2.9486521304059456,-2.0677614476898487),linewidth(2pt) + dotstyle); 
label("$Y$", (-2.869750317276038,-1.994949266972681), NE * labelscalefactor); 
dot((-2.9069134899946403,-1.4273208830994124),linewidth(2pt) + dotstyle); 
label("$Q$", (-2.829076313311573,-1.3441652035412326), NE * labelscalefactor); 
dot((-14.58832583745327,-0.7334908956054996),linewidth(2pt) + dotstyle); 
label("$U$", (-14.502515451113059,-0.6527071361453185), NE * labelscalefactor); 
dot((-11.433793812647506,3.8474892637385096),linewidth(2pt) + dotstyle); 
label("$K$", (-11.350280143867012,3.9231183098570535), NE * labelscalefactor); 
dot((-11.540362797522098,-6.525836664813006),linewidth(2pt) + dotstyle); 
label("$L$", (-11.451965153778175,-6.4487527010816565), NE * labelscalefactor); 
dot((-5.256493221081515,-6.058574568103326),linewidth(2pt) + dotstyle); 
label("$R$", (-5.167831541268317,-5.981001655490303), NE * labelscalefactor); 
dot((-3.09873970725935,0.12086294484481758),linewidth(2pt) + dotstyle); 
label("$V$", (-3.312109331151666,0.20144694710845756), NE * labelscalefactor); 
dot((-6.896106866781368,4.184907010995224),linewidth(2pt) + dotstyle); 
label("$S$", (-6.8151287018291535,4.26884734355501), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Consider the following lemmas:

Lemma 1. Let $ABCD$ be a cyclic quadrilateral whose diagonals intersect at $Y$ and $AD\cap BC=X.$ Let $P$ be a point on $XY$ and the second intersection of $\odot (ABCD)$ with $PA$ and $PB$ be $K$ and $L$ respectively. Then it follows that $XY, BK$ and $AL$ are concurrent.
Proof. Let $XY$ intersect $\odot(ABCD)$ at $I$ and $J.$ By Brocard's Theorem, it is easy to see that $(I,J;A,B)=-1.$
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(6cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -5.172652771186477, xmax = 10.198530855245242, ymin = -4.859595378688876, ymax = 5.831089427237665;  /* image dimensions */

 /* draw figures */
draw(circle((2.235675488430095,-0.6187792711653043), 3.3775654652468465), linewidth(0.4) + blue); 
draw((-0.08,1.84)--(5.6,-0.32), linewidth(0.4)); 
draw((3.32,2.58)--(-1.138688740973718,-0.7657980432597458), linewidth(0.4)); 
draw((1.276600275234065,5.179061053430356)--(1.5220063065799334,1.23078633411749), linewidth(0.4)); 
draw((1.3536390081741951,3.9396046309159387)--(-0.8973864599809147,0.6429145504281734), linewidth(0.4)); 
draw((1.276600275234065,5.179061053430356)--(-1.138688740973718,-0.7657980432597458), linewidth(0.4)); 
draw((1.276600275234065,5.179061053430356)--(5.6,-0.32), linewidth(0.4)); 
draw((4.845512684584302,1.5252119325475504)--(1.3536390081741951,3.9396046309159387), linewidth(0.4)); 
draw((1.5220063065799334,1.23078633411749)--(1.8454944779205704,-3.9737319162954723), linewidth(0.4)); 
 /* dots and labels */
dot((-0.08,1.84),linewidth(2pt) + dotstyle); 
label("$A$", (-0.026763442960632506,1.8952154190856052), NE * labelscalefactor); 
dot((3.32,2.58),linewidth(2pt) + dotstyle); 
label("$B$", (3.3772356992249386,2.6265433597895353), NE * labelscalefactor); 
dot((5.6,-0.32),linewidth(2pt) + dotstyle); 
label("$C$", (5.651000751231707,-0.27217465972786026), NE * labelscalefactor); 
dot((-1.138688740973718,-0.7657980432597458),linewidth(2pt) + dotstyle); 
label("$D$", (-1.0905131748936234,-0.7109714241502183), NE * labelscalefactor); 
dot((1.276600275234065,5.179061053430356),linewidth(2pt) + dotstyle); 
label("$X$", (1.329517465253931,5.232730203025358), NE * labelscalefactor); 
dot((1.5220063065799334,1.23078633411749),linewidth(2pt) + dotstyle); 
label("$Y$", (1.568861154938854,1.2835593232241365), NE * labelscalefactor); 
dot((1.3536390081741951,3.9396046309159387),linewidth(2pt) + dotstyle); 
label("$P$", (1.4092986951489053,3.9961211396532588), NE * labelscalefactor); 
dot((-0.8973864599809147,0.6429145504281734),linewidth(2pt) + dotstyle); 
label("$K$", (-0.8378726135595381,0.6984969706609924), NE * labelscalefactor); 
dot((4.845512684584302,1.5252119325475504),linewidth(2pt) + dotstyle); 
label("$L$", (4.893079067229451,1.5760904995057083), NE * labelscalefactor); 
dot((1.4330467410096437,2.6620339764674266),linewidth(2pt) + dotstyle); 
label("$I$", (1.4890799250438795,2.7196214613336718), NE * labelscalefactor); 
dot((1.8454944779205704,-3.9737319162954723),linewidth(2pt) + dotstyle); 
label("$J$", (1.9012829461679137,-3.915517491598348), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Now inverting around $P$ with radius $\sqrt{PI\cdot PJ},$ we obtain that $(I,J;K,L)=(J,I;A,B)=-1,$ which implies that $AB, CD, KL$ are concurrent, thus again by Brocard, $XY, BK$ and $AL$ are concurrent. $\square$

Lemma 2. Let $ABCD$ be a quadrilateral inscribed in the circle $\Gamma, $ Let $AC\cap BD= Y$ and $AD\cap BC=X.$ Let $P$ be a point on line $XY,$ let $K$ be the second intersection of $PA$ with $\Gamma$ and $L$ be the second intersection of $XK$ with $\Gamma$, finally let $DL\cap XY= Z$ then it follows that $(X,Y;P,Z)=-1.$
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(8cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -22.680500494225463, xmax = 17.0747406351982, ymin = -14.444614950563711, ymax = 13.205224035644418;  /* image dimensions */

 /* draw figures */
draw(circle((-3.64,-1.16), 5.381152292957336), linewidth(0.4) + blue); 
draw((-3.722093369329189,11.091310229368936)--(-8.790835128644087,-2.7174650806763028), linewidth(0.4)); 
draw((-8.790835128644087,-2.7174650806763028)--(-0.4303602250270546,3.1591448823710016), linewidth(0.4)); 
draw((-6.56,3.36)--(1.6846835554896908,-1.9375249410132471), linewidth(0.4)); 
draw((1.6846835554896908,-1.9375249410132471)--(-3.722093369329189,11.091310229368936), linewidth(0.4)); 
draw((-3.722093369329189,11.091310229368936)--(-3.2083861761728762,1.2064597573855096), linewidth(0.4)); 
draw((-3.722093369329189,11.091310229368936)--(-5.1074720182720705,4.017192856711877), linewidth(0.4)); 
draw((-6.951948556963188,-5.401202277188562)--(-5.1074720182720705,4.017192856711877), linewidth(0.4)); 
draw((-6.56,3.36)--(-3.3947298101688306,4.79211902592437), linewidth(0.4)); 
draw((-8.790835128644087,-2.7174650806763028)--(-2.5295738376256147,-11.855374989077417), linewidth(0.4)); 
draw((-2.5295738376256147,-11.855374989077417)--(-3.2083861761728762,1.2064597573855096), linewidth(0.4)); 
 /* dots and labels */
dot((-6.56,3.36),linewidth(2pt) + dotstyle); 
label("$A$", (-6.413866364279621,3.50714618227291), NE * labelscalefactor); 
dot((-0.4303602250270546,3.1591448823710016),linewidth(2pt) + dotstyle); 
label("$B$", (-0.2923845986763235,3.3008041002862822), NE * labelscalefactor); 
dot((1.6846835554896908,-1.9375249410132471),linewidth(2pt) + dotstyle); 
label("$C$", (1.8054265681877277,-1.788967255383871), NE * labelscalefactor); 
dot((-8.790835128644087,-2.7174650806763028),linewidth(2pt) + dotstyle); 
label("$D$", (-8.649238919134758,-2.5799452363326107), NE * labelscalefactor); 
dot((-3.722093369329189,11.091310229368936),linewidth(2pt) + dotstyle); 
label("$X$", (-3.5938579104623716,11.244974256771453), NE * labelscalefactor); 
dot((-3.3947298101688306,4.79211902592437),linewidth(2pt) + dotstyle); 
label("$P$", (-3.2499544404846583,4.9171504091815335), NE * labelscalefactor); 
dot((-5.1074720182720705,4.017192856711877),linewidth(2pt) + dotstyle); 
label("$K$", (-4.969471790373225,4.360562775230565), NE * labelscalefactor); 
dot((-3.2083861761728762,1.2064597573855096),linewidth(2pt) + dotstyle); 
label("$Y$", (-3.0780027054958015,1.340554321413318), NE * labelscalefactor); 
dot((-6.951948556963188,-5.401202277188562),linewidth(2pt) + dotstyle); 
label("$L$", (-6.826550528252877,-5.262392302158773), NE * labelscalefactor); 
dot((-2.5295738376256147,-11.855374989077417),linewidth(2pt) + dotstyle); 
label("$Z$", (-2.390195765540375,-11.727777537739778), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Proof. Note that the lemma is purely projective, so let us take a projective transformation fixing $\Gamma$ and taking $Y$ to the center of the circle. Now, the problem is reduced to the following :

"Let $ABCD$ be a rectangle, $P$ be a point on the perpendicular bisector of $AB,$ let $K$ be the second intersection of $PA$ with $\Gamma.$ Let $L$ be the point on $\Gamma$ such that $AKLD$ is a trapezium and $Z$ be the point at which the perpendicular bisector of $AB$ intersects $LD.$ Prove that $PY=ZY.$"

But now this is straightforward symmetry. Hence the lemma. $\square$

Now consider the following claims:

Claim 1. $S$ and $R$ both lie on $\omega.$
Proof. Angle chasing. $\square$

Claim 2. $Q$ lies on $\omega.$
Proof. Using Lemma 1 on cyclic quadrilateral $SBDR,$ we get $BY$ and $DX$ intersect on $AC.$ Now, letting $XE\cap \omega=Q',$ and applying Pascal's Theorem on cyclic hexagon $PBYQ'XD$ we get $Q',Y,F$ are collinear. Thus $Q=Q'.$ $\square$

Claim 3. $XYLK$ is cyclic.
Proof. Applying Brocard's theorem on quadrilateral $SBDR,$ we obtain $(B,D; U,V)=-1.$ Therefore, $(U,V;A,C)\overset{S}{=}(U,V;D,B)=-1,$ now since $M$ is the midpoint of $AC,$ therefore, $MA^2=MV\cdot MU=MX\cdot MB.$ Hence, $X$ is the $B-$Humpty point of $\triangle ABC$ and $Y$ is the $D-$Humpty point of $\triangle ADC,$ thus, \[\angle AXC=180^{\circ}-\angle ABC=180^{\circ}-ADC=\angle AYC\]So, the claim follows. $\square$

Claim 4. $K$ and $L$ lie on $\omega.$
Proof. Suppose $K$ and $L$ both doesn't lie on $\omega.$ Let the circumcircle of $XYLK$ be $\omega'.$ Let $\omega'$ intersect $AC$ at $U'$ and $V',$ again by Brocard, we have $(U',V';A,C)=-1$ also since $AM=MC$ so $MA^2=MV'\cdot MU'.$ But we also have $MA^2=MV\cdot MU,$ therefore, $M$ lies on the radical axis of $\omega'$ and $\omega$ which means $X,Y,M$ are collinear, which is a contradiction to the assumption that $ABCD$ is not a parallelogram. Thus, the claim follows. $\square$

Claim 5. $P$ is the mid-arc point of $SR$ in $\omega$ and $Q$ is the mid-arc point of $KL$ in $\omega.$
Proof. Note that $BP$ is the exterior angle bisector of $\angle SBR$ of triangle $SBR, $ therefore the first part follows. Similarly, as the $A-$Humpty point lies on the $A-$apollonian circle, we similarly have that $XQ$ is the exterior angle bisector of $\angle KXL$ of triangle $KXL.$ $\square$

Coming back to the original problem,

Applying Lemma 2 on quadrilateral $KXYL,$ we obtain $(A,C;M,KB\cap AC)=-1$ and $(A,C;M, RL\cap AC)=-1$ thus, it follows that $KB\parallel AC\parallel LR.$ So, it suffices to solve the following problem:

"$KBRL$ is a cyclic trapezium. Let $P$ and $Q$ be the mid-arc points of minor arc $SR$ and major arc $KL$ respectively. Prove that $PQ$ is perpendicular to the parallel sides."

Let the center of $\omega$ be $O.$ Let the common perpendicular bisector of the parallel sides of the trapezium be $\ell$. Let $P'$ and $Q'$ be the antipodes of $P$ and $Q$ with respect to $\omega$ respectively. Note that by symmetry, $P$ and $Q'$ are reflections of each other about $\ell$. Let the midpoint of $PQ'$ be $N,$ it is obvious that $N\in\ell.$ also midpoint of $QQ'$ is $O,$ so $PQ\parallel NO$ but $NO$ is same as $\ell.$ Thus, we are done. $\blacksquare$
This post has been edited 1 time. Last edited by ayan.nmath, May 20, 2019, 12:57 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Idio-logy
206 posts
#11 • 2 Y
Y by Adventure10, Mango247
Solution 1

Solution 2
This post has been edited 6 times. Last edited by Idio-logy, Sep 1, 2020, 5:15 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AlastorMoody
2125 posts
#12 • 5 Y
Y by AmirKhusrau, RudraRockstar, aops29, Adventure10, Mango247
stoooopeeeed
This post has been edited 3 times. Last edited by AlastorMoody, Aug 30, 2020, 7:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#13 • 2 Y
Y by HolyMath, Adventure10
cjquines0 wrote:
Let $ABCD$ be a convex quadrilateral with $\angle ABC = \angle ADC < 90^{\circ}$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $E$ and $F$ respectively, and meet each other at point $P$. Let $M$ be the midpoint of $AC$ and let $\omega$ be the circumcircle of triangle $BPD$. Segments $BM$ and $DM$ intersect $\omega$ again at $X$ and $Y$ respectively. Denote by $Q$ the intersection point of lines $XE$ and $YF$. Prove that $PQ \perp AC$.
Let $\gamma_1,\gamma_2$ be the circles $(ABC),(ADC)$ respectively. Since $\angle ABC=\angle ADC,$ hence $\gamma_1,\gamma_2$ are symmetric about $AC.$

Redefine $X,Y$ so that the rays $MB,MD$ meet $\gamma_1,\gamma_2$ again in $Y,X$ respectively.

Claim 1: $X,B,D,Y$ are concyclic, say lie on $\omega.$ Further, $P \in \omega.$
Proof: The key observation is that if $MD \cap \gamma_1=\{Y,Y'\},$ then $Y'$ is the reflection of $D$ over $M.$ This is because the orthocenter of $YAC$ is concyclic with $A,D,C.$

Similarly define $X'.$ Then we have
$$MX \cdot MB=MX \cdot MX'=MY \cdot MY'=MY \cdot MD$$Hence $X,B,D,Y$ are concyclic.

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -12.727459780479958, xmax = 21.114893618568733, ymin = -9.175235342663875, ymax = 12.688663761003287;  /* image dimensions */
pen qqzzff = rgb(0,0.6,1); pen ffwwzz = rgb(1,0.4,0.6); pen yqqqyq = rgb(0.5019607843137255,0,0.5019607843137255); pen ttffqq = rgb(0.2,1,0); pen wwqqcc = rgb(0.4,0,0.8); 

draw((9.046453683703144,1.2536626656814498)--(-0.9113304425574502,-0.6856077812488472)--(-2.39839621753842,1.4035333802046477)--(2.1163306099460035,4.904798168816871)--cycle, linewidth(0.4) + ffwwzz); 
 /* draw figures */
draw(circle((3.29,-1.27), 6.285350607784254), linewidth(0.4) + qqzzff); 
draw((-2.39839621753842,1.4035333802046477)--(9.046453683703144,1.2536626656814498), linewidth(0.4)); 
draw((9.046453683703144,1.2536626656814498)--(-0.9113304425574502,-0.6856077812488472), linewidth(0.4) + ffwwzz); 
draw((-0.9113304425574502,-0.6856077812488472)--(-2.39839621753842,1.4035333802046477), linewidth(0.4) + ffwwzz); 
draw((-2.39839621753842,1.4035333802046477)--(2.1163306099460035,4.904798168816871), linewidth(0.4) + ffwwzz); 
draw((2.1163306099460035,4.904798168816871)--(9.046453683703144,1.2536626656814498), linewidth(0.4) + ffwwzz); 
draw(circle((-4.937316151445251,5.109857787050801), 7.056626820338141), linewidth(0.4) + red); 
draw(circle((3.3580574661647185,3.9271960458860957), 6.285350607784249), linewidth(0.4) + qqzzff); 
draw((0.5478525794644877,9.549329160420113)--(3.3240287330823617,1.3285980229430487), linewidth(0.4) + linetype("2 2") + yqqqyq); 
draw((3.3240287330823617,1.3285980229430487)--(-2.9825697890902756,-1.6706251412055315), linewidth(0.4) + linetype("2 2") + yqqqyq); 
draw((0.5478525794644877,9.549329160420113)--(2.4285521212741736,1.3403243208681919), linewidth(0.4) + linetype("2 2") + ttffqq); 
draw((-2.9825697890902756,-1.6706251412055315)--(1.93349868099754,3.5011671331960197), linewidth(0.4) + linetype("2 2") + ttffqq); 
draw((1.9732671696014106,6.538080544321976)--(-0.9113304425574502,-0.6856077812488472), linewidth(0.4)); 
draw((3.4403572987472604,10.212007817159023)--(1.9732671696014106,6.538080544321976), linewidth(0.4)); 
draw((3.4403572987472604,10.212007817159023)--(3.2077001674174603,-7.55481177127293), linewidth(0.4) + wwqqcc); 
draw((1.9732671696014106,6.538080544321976)--(3.2077001674174603,-7.55481177127293), linewidth(0.4)); 
draw((-3.5207022920809425,12.022830176332599)--(3.3240287330823617,1.3285980229430487), linewidth(0.4) + blue); 
draw((2.4285521212741736,1.3403243208681919)--(3.2757576335821823,-2.357615725386829), linewidth(0.4) + linetype("2 2") + ttffqq); 
draw((1.93349868099754,3.5011671331960197)--(3.372299832582537,5.01481177127293), linewidth(0.4) + linetype("2 2") + ttffqq); 
draw((1.7965827708801083,7.219499317126694)--(3.3240287330823617,1.3285980229430487), linewidth(0.4) + blue); 
draw((3.3240287330823617,1.3285980229430487)--(4.531726856218719,-2.2476021229307683), linewidth(0.4) + linetype("2 2") + yqqqyq); 
draw((3.3240287330823617,1.3285980229430487)--(7.559387908722176,3.342803827134945), linewidth(0.4) + linetype("2 2") + yqqqyq); 
 /* dots and labels */
dot((-2.39839621753842,1.4035333802046477),linewidth(4pt) + dotstyle); 
label("$A$", (-3.2284167236584875,1.0966112170854985), NE * labelscalefactor); 
dot((9.046453683703144,1.2536626656814498),linewidth(4pt) + dotstyle); 
label("$C$", (9.3940404908297,0.8390100494428809), NE * labelscalefactor); 
dot((2.1163306099460035,4.904798168816871),linewidth(4pt) + dotstyle); 
label("$B$", (2.3100083806577585,5.186029753412052), NE * labelscalefactor); 
dot((-0.9113304425574502,-0.6856077812488472),linewidth(4pt) + dotstyle); 
label("$D$", (-1.0388067986962506,-1.7692017729386216), NE * labelscalefactor); 
dot((1.9732671696014106,6.538080544321976),linewidth(4pt) + dotstyle); 
label("$P$", (2.2456080887471046,6.152034132071868), NE * labelscalefactor); 
dot((2.4285521212741736,1.3403243208681919),linewidth(4pt) + dotstyle); 
label("$E$", (1.5694050236852373,0.8068099034875538), NE * labelscalefactor); 
dot((-0.08916004100671432,1.3732938507423975),linewidth(4pt) + dotstyle); 
label("$F$", (-0.45920417150036447,1.6762138442813879), NE * labelscalefactor); 
dot((3.3240287330823617,1.3285980229430487),linewidth(4pt) + dotstyle); 
label("$M$", (3.662414510781493,0.7746097575322266), NE * labelscalefactor); 
dot((-2.9825697890902756,-1.6706251412055315),linewidth(4pt) + dotstyle); 
label("$Y$", (-3.5182180372564305,-2.4454048380004925), NE * labelscalefactor); 
dot((0.5478525794644877,9.549329160420113),linewidth(4pt) + dotstyle); 
label("$X$", (0.37799962333813786,10.080451938621785), NE * labelscalefactor); 
dot((1.93349868099754,3.5011671331960197),linewidth(4pt) + dotstyle); 
label("$Q$", (1.1186029803106592,3.2862211420477476), NE * labelscalefactor); 
dot((3.4403572987472604,10.212007817159023),linewidth(4pt) + dotstyle); 
label("$T$", (3.340413051228223,10.692254711773002), NE * labelscalefactor); 
dot((3.2077001674174603,-7.55481177127293),linewidth(4pt) + dotstyle); 
label("$S$", (2.9862114457196256,-8.499032277602005), NE * labelscalefactor); 
dot((-3.5207022920809425,12.022830176332599),linewidth(4pt) + dotstyle); 
dot((3.372299832582537,5.01481177127293),linewidth(4pt) + dotstyle); 
label("$K$", (3.501413781004858,5.282630191278034), NE * labelscalefactor); 
dot((3.2757576335821823,-2.357615725386829),linewidth(4pt) + dotstyle); 
label("$L$", (3.598014218870839,-3.153808049017691), NE * labelscalefactor); 
dot((1.7965827708801083,7.219499317126694),linewidth(4pt) + dotstyle); 
dot((7.559387908722176,3.342803827134945),linewidth(4pt) + dotstyle); 
label("$Y'$", (7.68743275519737,3.6082226016010193), NE * labelscalefactor); 
dot((4.531726856218719,-2.2476021229307683),linewidth(4pt) + dotstyle); 
label("$X'$", (4.66061903539663,-3.1216079030623636), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

We show $P \in (XBD).$ It is easy to see that $\measuredangle MBE=\measuredangle ELM,$ since they subtend equal arcs in their circles. Hence
$$\measuredangle XBP=\measuredangle MBE=\measuredangle ELM=\measuredangle XLT=\measuredangle XDP$$Hence we are done here. $\square$
Let the perpendicular bisector of $AC$ meet $\gamma_1,\gamma_2$ in $\{S,K\},\{T,L\}$ respectively, so that $K,L$ lie in the interiors of $\gamma_2,\gamma_1$ respectively.

Claim 2: The point $Q$ lies on $\omega.$ Further, $K,L$ lie on $YQ, XQ$ respectively.
Proof: Firstly, see that $D$ is the $Y$-HM point (The Humpty point) in $\triangle YAC.$ This is because it lies on the $Y$ median and $\measuredangle ADC=-\measuredangle AYC.$ Hence, by a well-known lemma, it lies on the $Y$ Apollonius circle and so $YA:YC=DA:DC=AF:FC,$ so $YF$ bisects $\angle AYC.$ Since $K$ is the arc midpoint in $\gamma_1,$ hence $YF$ passes through $K.$

Due to the angle bisectors, $P=DT \cap BS,$ as $T,S$ are arc midpoints.

Now notice that $EMXT, EMSY$ are both cyclic, due to right angles. Hence
$$\measuredangle BXQ+\measuredangle BYQ = \measuredangle MXE+\measuredangle BYM=\measuredangle MTE+\measuredangle BSM = \measuredangle BPD$$Hence $Q \in \omega,$ which is what we wanted. $\square$
To conclude, notice that $M$ is the midpoint of both $KL, TS.$ Let $PQ \cap TS=Z.$ Our goal is to show $Z=\infty.$ Then
$$(T,S;M,Z) \overset{P}{=} (D,B; PM \cap \omega, Q) \overset{M}{=} (Y,X;P,MQ \cap \omega) \overset{Q}{=} (K,L;M,Z)$$Thus $ZT:ZS=ZL:ZK.$ It is not too hard to check now, say algebraically that since $\{T,S\},\{K,L\}$ have the same midpoint, this is possible if and only if $Z \in  \{M,\infty\}.$ Now, $P,M,Q$ are collinear happens only if $P, Q \in TS$ (Proved formally in the comments). Even here, $PQ, TS$ are "parallel", since they coincide. Hence we are done. $\blacksquare$
Comments: We present a formal way to see that $P,M,Q$ are collinear happens only twice, which is when $P,Q \in TS$ (note that $P$ lands on $TS$ exactly twice, when $B=K,S).$ Move $B$ on its circle $\gamma_1$ while fixing the other points (in particular $D).$ Then $B \overset{M}{\mapsto} P$ is projective and so $P$ moves oN $TD$ with degree $1.$ Also, $B \overset{M}{\mapsto} X \overset{L}{\mapsto} Q$ is projective and so $Q$ moves on $YK$ with degree $1$ (note that $Y$ is fixed as $D$ is fixed).

Hence, by Zack's lemma, $\deg MP \le 1$ and $\deg MQ \le 1.$ Now assume on the contrary that $M,P,Q$ are collinear for more than three positions of $B.$ Then by Zack's lemma $0=\deg M=\deg (MP \cap MQ) \le 1+1-3=-1,$ a contradiction.

Hence, for every position of $D,$ there are exactly two positions of $D$ for which $M,P,Q$ are collinear. And even in these two positions, $PQ \parallel TS,$ and hence we are home free!
This post has been edited 1 time. Last edited by Wizard_32, Oct 15, 2019, 9:45 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lminsl
544 posts
#14 • 2 Y
Y by Adventure10, Mango247
We will deal with non-trivial cases where $(AB, CD)$ and $(AD, BC)$ aren't parallel.

Denote $\Omega$ by the circumcircle of triangle $BPD$, and $R$ by the antipodal point of $P$ on $\Omega$.

Let $U=AB \cap CD$, and $V=AD \cap BC$, $E' = AC \cap BR$, $F' = AC \cap DR$.
Since $\angle PBV=\angle PDA$, $V$ lies on $\Omega$. Similarly $U$ lies on $\Omega$ too. Note that $\angle PUV=\angle PBV=\angle PVU$, so $P$ is the midpoint of arc $UV$.

Note that $\odot (AC)$ and $\Omega$ are orthogonal, so $MC^2=MY \cdot MD$. Since $DF \perp DF'$, $D(AC, FF')=-1$, so $MC^2=MF \cdot MF'$. Combining these results give $MY \cdot MD=MF \cdot MF'$, so $(YDFF')$ are concyclic. Similarly $(XBEE')$ are concyclic too.

Hence, $\angle QFE=\angle YFF'=\angle RXY$, and similarly we get $\angle QEF=\angle RYX$. This leads to $\angle XQY=\angle XRY$, thus $Q$ lies on $\Omega$. Then $\angle QEF=\angle RYX=\angle RQX$, so $RQ$ is parallel to $AC$, but since $PQ\perp QR$, we obtain $PQ \perp AC$, and we're done.
This post has been edited 2 times. Last edited by lminsl, Oct 18, 2019, 12:46 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Physicsknight
640 posts
#15 • 2 Y
Y by Adventure10, Mango247
By an angle chase, notice that $G $, $H $ lies on $\odot (PBD)$. $BI $ is the external angle bisector of $\angle ABC $. By Braikenridge-Maclaurin's theorem(converse of Pascal's theorem) $ME.MI=MX.MB $, hence $IBXE $ is concyclic quadrilateral, and $\angle IXE=90^{\circ} $. Let $Q_1$ be the second intersection of $XE $ with $\odot (PBD) $. Now angle chasing $PQ_1\perp CA $.
Z K Y
G
H
=
a