Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
a_k+a_n/1+a_ka_n is constant when k+n is constant
gghx   2
N 15 minutes ago by lightsynth123
Source: SMO senior 2024 Q5
Let $a_1,a_2,\dots$ be a sequence of positive numbers satisfying, for any positive integers $k,l,m,n$ such that $k+n=m+l$, $$\frac{a_k+a_n}{1+a_ka_n}=\frac{a_m+a_l}{1+a_ma_l}.$$Show that there exist positive numbers $b,c$ so that $b\le a_n\le c$ for any positive integer $n$.
2 replies
gghx
Aug 3, 2024
lightsynth123
15 minutes ago
Euler line of incircle touching points /Reposted/
Eagle116   5
N 20 minutes ago by Tsikaloudakis
Let $ABC$ be a triangle with incentre $I$ and circumcentre $O$. Let $D,E,F$ be the touchpoints of the incircle with $BC$, $CA$, $AB$ respectively. Prove that $OI$ is the Euler line of $\vartriangle DEF$.
5 replies
Eagle116
Yesterday at 2:48 PM
Tsikaloudakis
20 minutes ago
Bunch of midpoints
Retemoeg   0
24 minutes ago
Source: Own
Let $ABC$ be a scalene triangle with orthocenter $H$ and medial triangle $MNP$. Let $F$ be a point on $AC$ such that $\angle HMF = 90^{\circ}$. If $L$ is the midpoint of segment $BF$, show that $\triangle NLP$ is isoceles.
0 replies
Retemoeg
24 minutes ago
0 replies
Floor sequence
va2010   86
N 38 minutes ago by math-olympiad-clown
Source: 2015 ISL N1
Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2}   \qquad  \textrm{and} \qquad    a_{k+1} = a_k\lfloor a_k \rfloor   \quad \textrm{for} \, k = 0, 1, 2, \cdots \]contains at least one integer term.
86 replies
va2010
Jul 7, 2016
math-olympiad-clown
38 minutes ago
Inequality from my inequality training.
Orkhan-Ashraf_2002   3
N 41 minutes ago by SunnyEvan
Let $a,b,c$ non-negative real numbers,but $ab+bc+ca\not=$0.Prove that
\[1\leq \frac{a+b}{a+4b+c}+\frac{b+c}{b+4c+a}+\frac{c+a}{c+4a+b}\leq \frac{4}{3}\]
3 replies
Orkhan-Ashraf_2002
Aug 21, 2016
SunnyEvan
41 minutes ago
SL 2015 G1: Prove that IJ=AH
Problem_Penetrator   135
N an hour ago by math-olympiad-clown
Source: IMO 2015 Shortlist, G1
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.
135 replies
Problem_Penetrator
Jul 7, 2016
math-olympiad-clown
an hour ago
Easy diophantine
gghx   3
N an hour ago by lightsynth123
Source: SMO senior 2024 Q2 / SMO junior 2024 Q5
Find all integer solutions of the equation $$y^2+2y=x^4+20x^3+104x^2+40x+2003.$$
Note: has appeared many times before, see here
3 replies
gghx
Aug 3, 2024
lightsynth123
an hour ago
Easy IMO 2023 NT
799786   132
N an hour ago by anudeep
Source: IMO 2023 P1
Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.
132 replies
799786
Jul 8, 2023
anudeep
an hour ago
Equal Distances in an Isosceles Setting
mojyla222   1
N an hour ago by Retemoeg
Source: IDMC 2025 P4
Let $ABC$ be an isosceles triangle with $AB=AC$. The circle $\omega_1$, passing through $B$ and $C$, intersects segment $AB$ at $K\neq B$. The circle $\omega_2$ is tangent to $BC$ at $B$ and passes through $K$. Let $M$ and $N$ be the midpoints of segments $AB$ and $AC$, respectively. The line $MN$ intersects $\omega_1$ and $\omega_2$ at points $P$ and $Q$, respectively, where $P$ and $Q$ are the intersections closer to $M$. Prove that $MP=MQ$.

Proposed by Hooman Fattahi
1 reply
1 viewing
mojyla222
3 hours ago
Retemoeg
an hour ago
Circles tangent to AD and AB intersect on AC
gghx   4
N 2 hours ago by lightsynth123
Source: SMO senior 2024 Q1
In an acute triangle $ABC$, $AC>AB$, $D$ is the point on $BC$ such that $AD=AB$. Let $\omega_1$ be the circle through $C$ tangent to $AD$ at $D$, and $\omega_2$ the circle through $C$ tangent to $AB$ at $B$. Let $F(\ne C)$ be the second intersection of $\omega_1$ and $\omega_2$. Prove that $F$ lies on $AC$.
4 replies
gghx
Aug 3, 2024
lightsynth123
2 hours ago
IMO 2023 P2
799786   90
N 2 hours ago by wu2481632
Source: IMO 2023 P2
Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$.
90 replies
799786
Jul 8, 2023
wu2481632
2 hours ago
New Year Calls Between Two Families
mojyla222   1
N 2 hours ago by YaoAOPS
Source: IDMC 2025 P1
Let $m,n$ be natural numbers. As the New Year arrives, it is a cherished tradition among Iranian families to call their relatives and exchange Nowruz greetings. Just moments after the New Year begins, a family with $n$ members calls a related family with $m$ members to celebrate the occasion. Since the two families are close, every member of one family wishes to speak with every member of the other family to exchange greetings. Thus, during this single call, all $mn$ distinct one-on-one conversations must take place exactly once.

Each family has only one telephone in their home, meaning the phone must be passed between family members as needed. For example, if the mothers of both families start the conversation, and then the mother from one family wants to speak with a child from the other family, only one phone needs to be passed. However, if after the mothers' conversation, the fathers from both families wish to speak with each other, then both phones must be handed over — once in each household — resulting in two phone passes.

What are the minimum and maximum possible numbers of times the telephones are passed in total (across both families) during the entire process?

Proposed by Soroush Behroozifar
1 reply
mojyla222
3 hours ago
YaoAOPS
2 hours ago
Paint and Optimize: A Grid Strategy Problem
mojyla222   1
N 2 hours ago by YaoAOPS
Source: Iran 2025 second round p2
Ali and Shayan are playing a turn-based game on an infinite grid. Initially, all cells are white. Ali starts the game, and in the first turn, he colors one unit square black. In the following turns, each player must color a white square that shares at least one side with a black square. The game continues for exactly 2808 turns, after which each player has made 1404 moves. Let $A$ be the set of black cells at the end of the game. Ali and Shayan respectively aim to minimize and maximise the perimeter of the shape $A$ by playing optimally. (The perimeter of shape $A$ is defined as the total length of the boundary segments between a black and a white cell.)

What are the possible values of the perimeter of $A$, assuming both players play optimally?
1 reply
mojyla222
3 hours ago
YaoAOPS
2 hours ago
Problem3
samithayohan   114
N 2 hours ago by Retemoeg
Source: IMO 2015 problem 3
Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma $ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order.

Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other.

Proposed by Ukraine
114 replies
samithayohan
Jul 10, 2015
Retemoeg
2 hours ago
computational in an isosceles trapezoid, inradius given
parmenides51   1
N Sep 22, 2018 by Ari004
Source: Vyacheslav Yasinsky Geometry Olympiad 2017 X-XI p1 [Ukranie]
In the isosceles trapezoid with the area of $28$, a circle of radius $2$ is inscribed. Find the length of the side of the trapezoid.
1 reply
parmenides51
Sep 22, 2018
Ari004
Sep 22, 2018
computational in an isosceles trapezoid, inradius given
G H J
G H BBookmark kLocked kLocked NReply
Source: Vyacheslav Yasinsky Geometry Olympiad 2017 X-XI p1 [Ukranie]
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30629 posts
#1 • 1 Y
Y by Adventure10
In the isosceles trapezoid with the area of $28$, a circle of radius $2$ is inscribed. Find the length of the side of the trapezoid.
This post has been edited 3 times. Last edited by parmenides51, Sep 22, 2018, 4:31 AM
Reason: source edit
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ari004
472 posts
#2 • 2 Y
Y by Adventure10, Mango247
Suppose in the isosceles trapezoid $ABCD$,$AB \parallel CD$,$I$ is the incenter and $AB=2x,BC=AD=h,CD=2y$.Let $G$ and $H$ be the projections of $I$ onto $AB$ and $CD$ and WLOG $AB<CD$.Easy to see that $G,I,H$ are collinear and by symmetry,$G,H$ are the midpoints of $AB,CD$.Since the area of $ABCD=28$,$x+y=\frac{28}{4}=7$.By Pitot's theorem on $ABCD$,we have $2(x+y)=2h$ or $x+y=7=h$.Let $X$ be the projection of $B$ onto $CD$.Considering the right angled $\bigtriangleup BXC$,we have $BX=4,CX=7-2x,BC=7$,by Pythagoras theorem,$x=\frac{7-\sqrt{33}}{2}$ and we are done.
This post has been edited 5 times. Last edited by Ari004, Sep 22, 2018, 7:23 AM
Z K Y
N Quick Reply
G
H
=
a