Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Problem 5
blug   4
N 4 minutes ago by Sir_Cumcircle
Source: Czech-Polish-Slovak Junior Match 2025 Problem 5
For every integer $n\geq 1$ prove that
$$\frac{1}{n+1}-\frac{2}{n+2}+\frac{3}{n+3}-\frac{4}{n+4}+...+\frac{2n-1}{3n-1}>\frac{1}{3}.$$
4 replies
blug
May 19, 2025
Sir_Cumcircle
4 minutes ago
Cool integer FE
Rijul saini   2
N 22 minutes ago by ZVFrozel
Source: LMAO Revenge 2025 Day 1 Problem 1
Alice has a function $f : \mathbb N \rightarrow \mathbb N$ such that for all naturals $a, b$ the function satisfies:
\[a + b \mid a^{f(a)} + b^{f(b)} \]Bob wants to find all possible functions Alice could have. Help Bob and find all functions that Alice could have.
2 replies
Rijul saini
Yesterday at 7:06 PM
ZVFrozel
22 minutes ago
A beautiful collinearity regarding three wonderful points
math_pi_rate   10
N 35 minutes ago by alexanderchew
Source: Own
Let $\triangle DEF$ be the medial triangle of an acute-angle triangle $\triangle ABC$. Suppose the line through $A$ perpendicular to $AB$ meet $EF$ at $A_B$. Define $A_C,B_A,B_C,C_A,C_B$ analogously. Let $B_CC_B \cap BC=X_A$. Similarly define $X_B$ and $X_C$. Suppose the circle with diameter $BC$ meet the $A$-altitude at $A'$, where $A'$ lies inside $\triangle ABC$. Define $B'$ and $C'$ similarly. Let $N$ be the circumcenter of $\triangle DEF$, and let $\omega_A$ be the circle with diameter $X_AN$, which meets $\odot (X_A,A')$ at $A_1,A_2$. Similarly define $\omega_B,B_1,B_2$ and $\omega_C,C_1,C_2$.
1) Show that $X_A,X_B,X_C$ are collinear.
2) Prove that $A_1,A_2,B_1,B_2,C_1,C_2$ lie on a circle centered at $N$.
3) Prove that $\omega_A,\omega_B,\omega_C$ are coaxial.
4) Show that the line joining $X_A,X_B,X_C$ is perpendicular to the radical axis of $\omega_A,\omega_B,\omega_C$.
10 replies
math_pi_rate
Nov 8, 2018
alexanderchew
35 minutes ago
Tricky FE
Rijul saini   4
N 36 minutes ago by YaoAOPS
Source: LMAO 2025 Day 1 Problem 1
Let $\mathbb{R}$ denote the set of all real numbers. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
$$f(xy) + f(f(y)) = f((x + 1)f(y))$$for all real numbers $x$, $y$.

Proposed by MV Adhitya and Kanav Talwar
4 replies
Rijul saini
Yesterday at 6:58 PM
YaoAOPS
36 minutes ago
Quotient of Polynomials is Quadratic
tastymath75025   26
N an hour ago by pi271828
Source: USA TSTST 2017 Problem 3, by Linus Hamilton and Calvin Deng
Consider solutions to the equation \[x^2-cx+1 = \dfrac{f(x)}{g(x)},\]where $f$ and $g$ are polynomials with nonnegative real coefficients. For each $c>0$, determine the minimum possible degree of $f$, or show that no such $f,g$ exist.

Proposed by Linus Hamilton and Calvin Deng
26 replies
tastymath75025
Jun 29, 2017
pi271828
an hour ago
Bugs Bunny at it again
Rijul saini   4
N an hour ago by ThatApollo777
Source: LMAO 2025 Day 2 Problem 1
Bugs Bunny wants to choose a number $k$ such that every collection of $k$ consecutive positive integers contains an integer whose sum of digits is divisible by $2025$.

Find the smallest positive integer $k$ for which he can do this, or prove that none exist.

Proposed by Saikat Debnath and MV Adhitya
4 replies
Rijul saini
Yesterday at 7:01 PM
ThatApollo777
an hour ago
Orthocenters equidistant from circumcenter
Rijul saini   5
N an hour ago by YaoAOPS
Source: India IMOTC 2025 Day 1 Problem 2
In triangle $ABC$, consider points $A_1,A_2$ on line $BC$ such that $A_1,B,C,A_2$ are in that order and $A_1B=AC$ and $CA_2=AB$. Similarly consider points $B_1,B_2$ on line $AC$, and $C_1,C_2$ on line $AB$. Prove that orthocenters of triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equidistant from the circumcenter of $ABC$.

Proposed by Shantanu Nene
5 replies
1 viewing
Rijul saini
Yesterday at 6:31 PM
YaoAOPS
an hour ago
Six variables (2)
Nguyenhuyen_AG   1
N an hour ago by lbh_qys
Let $a, \, b, \,c, \, x, \, y, \, z$ be six positive real numbers. Prove that
\[a^2+b^2+c^2+\frac{4(ax+by+cz)\sqrt{ab+bc+ca}}{x+y+z} \geqslant 2(ab+bc+ca).\]
1 reply
Nguyenhuyen_AG
2 hours ago
lbh_qys
an hour ago
The line is a common tangent
Rijul saini   3
N an hour ago by pingupignu
Source: India IMOTC 2025 Day 4 Problem 3
Let $ABCD$ be a cyclic quadrilateral with circumcentre $O$ and circumcircle $\Gamma$. Let $T$ be the intersection of tangents at $B$ and $C$ to $\Gamma$. Let $\omega$ be the circumcircle of triangle $TBC$ and let $M(\neq T)$, $N(\neq T)$ denote the second intersections of $TA,TD$ with $\omega$ respectively. Let $AD$ and $BC$ intersect at $E$ and $\Omega$ be the circumcircle of triangle $EMN$. If $AD$ intersects $\Omega$ again at $X \neq E$, prove that the line tangent to $\Omega$ at $X$ is also tangent to $\omega$.

Proposed by Malay Mahajan and Siddharth Choppara
3 replies
1 viewing
Rijul saini
Yesterday at 6:47 PM
pingupignu
an hour ago
One of P or Q lies on circle
Rijul saini   6
N an hour ago by ZVFrozel
Source: LMAO 2025 Day 1 Problem 3
Let $ABC$ be an acute triangle with orthocenter $H$. Let $M$ be the midpoint of $BC$, and $K$ be the intersection of the tangents from $B$ and $C$ to the circumcircle of $ABC$. Denote by $\Omega$ the circle centered at $H$ and tangent to line $AM$.

Suppose $AK$ intersects $\Omega$ at two distinct points $X$, $Y$.
Lines $BX$ and $CY$ meet at $P$, while lines $BY$ and $CX$ meet at $Q$. Prove that either $P$ or $Q$ lies on $\Omega$.

Proposed by MV Adhitya, Archit Manas and Arnav Nanal
6 replies
+1 w
Rijul saini
Yesterday at 6:59 PM
ZVFrozel
an hour ago
Polynomial strategy game
Rijul saini   1
N an hour ago by everythingpi3141592
Source: India IMOTC 2025 Day 1 Problem 3
Let $N \geqslant 2024!$ be a positive integer. Alice and Bob play the following game, with Alice going first after which they alternate turns. They determine the numbers $a_0,a_1, a_2, \ldots, a_{2025}$ in the following way.

On the $k$th turn, the player whose turn it is sets $a_{k-1}$ to be an integer such that:
$\bullet$ $1\leqslant a_{k-1}\leqslant N$
$\bullet$ There exists a polynomial $P$ with integer coefficients and $ P(i) = a_i$ for $0 \leqslant i \leqslant k-1$

Alice wins if and only if Bob is unable to pick a value in one of his moves i.e. $a_{1}, a_3,\ldots$. In particular, she also loses if Bob is able to pick $a_{2025}$ successfully.
Determine all values of $N$ for which Alice can ensure that she wins regardless of Bob's strategy.

Proposed by Atul Shatavart Nadig and Rohan Goyal
1 reply
Rijul saini
Yesterday at 6:31 PM
everythingpi3141592
an hour ago
One of the lines is tangent
Rijul saini   4
N an hour ago by ZVFrozel
Source: LMAO 2025 Day 2 Problem 2
Let $ABC$ be a scalene triangle with incircle $\omega$. Denote by $N$ the midpoint of arc $BAC$ in the circumcircle of $ABC$, and by $D$ the point where the $A$-excircle touches $BC$. Suppose the circumcircle of $AND$ meets $BC$ again at $P \neq D$ and intersects $\omega$ at two points $X$, $Y$.

Prove that either $PX$ or $PY$ is tangent to $\omega$.

Proposed by Sanjana Philo Chacko
4 replies
Rijul saini
Yesterday at 7:02 PM
ZVFrozel
an hour ago
Circumcenter lies on altitude
ABCDE   59
N 2 hours ago by Ilikeminecraft
Source: 2016 ELMO Problem 2
Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle $ABC$ and a point $D$ such that $DB$ and $DC$ are tangent to the circumcircle of $ABC$. Let $B'$ be the reflection of $B$ over $AC$ and $C'$ be the reflection of $C$ over $AB$. If $O$ is the circumcenter of $DB'C'$, help Oscar prove that $AO$ is perpendicular to $BC$.

James Lin
59 replies
ABCDE
Jun 24, 2016
Ilikeminecraft
2 hours ago
OreINMO: My stepfunction cannot be this linear
anantmudgal09   15
N 2 hours ago by shendrew7
Source: INMO 2023 P3
Let $\mathbb N$ denote the set of all positive integers. Find all real numbers $c$ for which there exists a function $f:\mathbb N\to \mathbb N$ satisfying:
[list]
[*] for any $x,a\in\mathbb N$, the quantity $\frac{f(x+a)-f(x)}{a}$ is an integer if and only if $a=1$;
[*] for all $x\in \mathbb N$, we have $|f(x)-cx|<2023$.
[/list]

Proposed by Sutanay Bhattacharya
15 replies
anantmudgal09
Jan 15, 2023
shendrew7
2 hours ago
Easy diophantine
gghx   3
N Apr 20, 2025 by lightsynth123
Source: SMO senior 2024 Q2 / SMO junior 2024 Q5
Find all integer solutions of the equation $$y^2+2y=x^4+20x^3+104x^2+40x+2003.$$
Note: has appeared many times before, see here
3 replies
gghx
Aug 3, 2024
lightsynth123
Apr 20, 2025
Easy diophantine
G H J
G H BBookmark kLocked kLocked NReply
Source: SMO senior 2024 Q2 / SMO junior 2024 Q5
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
gghx
1072 posts
#1 • 1 Y
Y by Khoi_dang-vu_2009
Find all integer solutions of the equation $$y^2+2y=x^4+20x^3+104x^2+40x+2003.$$
Note: has appeared many times before, see here
This post has been edited 2 times. Last edited by gghx, Oct 12, 2024, 10:45 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tait1k27
490 posts
#2 • 1 Y
Y by AnthonyDraude
$$(y+1)^2=(x^2+10x+2)^2+2000$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
COCBSGGCTG3
8 posts
#3
Y by
Bordering Method
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lightsynth123
19 posts
#4
Y by
By completing the square, it is easy to find out that
$$(y-x^2-10x-1)(y+x^2+10x+3) = 2000$$which is then easy to solve via factoring.
Z K Y
N Quick Reply
G
H
=
a