Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Yet another domino problem
juckter   15
N 4 minutes ago by lksb
Source: EGMO 2019 Problem 2
Let $n$ be a positive integer. Dominoes are placed on a $2n \times 2n$ board in such a way that every cell of the board is adjacent to exactly one cell covered by a domino. For each $n$, determine the largest number of dominoes that can be placed in this way.
(A domino is a tile of size $2 \times 1$ or $1 \times 2$. Dominoes are placed on the board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap. Two cells are said to be adjacent if they are different and share a common side.)
15 replies
juckter
Apr 9, 2019
lksb
4 minutes ago
Difference of counts of any 2 colors in any interesting rectangle is at most 1
NO_SQUARES   0
4 minutes ago
Source: 239 MO 2025 10-11 p8
Positive integer numbers $n$ and $k > 1$ are given. Losyash likes some of the cells of the $n \times n$ checkerboard. In addition, he is interested in any checkered rectangle with a perimeter of $2n + 2$, the upper-left corner of which coincides with the upper-left corner of the board (there are $n$ such rectangles in total). Given $n$ and $k$, determine whether Losyash can color each cell he likes in one of $k$ colors so that in any rectangle of interest to him the number of cells of any two colors differ by no more than $1$.
0 replies
NO_SQUARES
4 minutes ago
0 replies
Reflection of H about O and SA + SB + SC + AM < AB + BC + CA if US=UM.
NO_SQUARES   0
9 minutes ago
Source: 239 MO 2025 10-11 p7
Point $M$ is the midpoint of side $BC$ of an acute—angled triangle $ABC$. The point $U$ is symmetric to the orthocenter $ABC$ relative to its circumcenter. The point $S$ inside triangle $ABC$ is such that $US = UM$. Prove that $SA + SB + SC + AM < AB + BC + CA$.
0 replies
NO_SQUARES
9 minutes ago
0 replies
If {a^r}={a^s}={a^t}=k, then k=0
NO_SQUARES   0
13 minutes ago
Source: 239 MO 2025 10-11 p6
The real number $a>1$ is given. Suppose that $r$, $s$ and $t$ are different positive integer numbers such that $\{a^r\}=\{a^s\}=\{a^t\}$. Prove that $\{a^r\}=\{a^s\}=\{a^t\}=0$.
0 replies
+1 w
NO_SQUARES
13 minutes ago
0 replies
Inequalities
sqing   11
N 3 hours ago by sqing
Let $a,b,c> 0$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1.$ Prove that
$$  (1-abc) (1-a)(1-b)(1-c)  \ge 208 $$$$ (1+abc) (1-a)(1-b)(1-c)  \le -224 $$$$(1+a^2b^2c^2) (1-a)(1-b)(1-c)  \le -5840 $$
11 replies
sqing
Jul 12, 2024
sqing
3 hours ago
A rather difficult question
BeautifulMath0926   3
N 4 hours ago by evankuang
I got a difficult equation for users to solve:
Find all functions f: R to R, so that to all real numbers x and y,
1+f(x)f(y)=f(x+y)+f(xy)+xy(x+y-2) holds.
3 replies
BeautifulMath0926
Apr 13, 2025
evankuang
4 hours ago
The return of an inequality
giangtruong13   4
N 5 hours ago by sqing
Let $a,b,c$ be real positive number satisfy that: $a+b+c=1$. Prove that: $$\sum_{cyc} \frac{a}{b^2+c^2} \geq \frac{3}{2}$$
4 replies
giangtruong13
Mar 18, 2025
sqing
5 hours ago
Looking for users and developers
derekli   10
N 5 hours ago by Jackson0423
Guys I've been working on a web app that lets you grind high school lvl math. There's AMCs, AIME, BMT, HMMT, SMT etc. Also, it's infinite practice so you can keep grinding without worrying about finding new problems. Please consider helping me out by testing and also consider joining our developer team! :P :blush:

Link: https://stellarlearning.app/competitive
10 replies
derekli
Yesterday at 12:57 AM
Jackson0423
5 hours ago
Polynomial
kellyelliee   1
N 5 hours ago by Jackson0423
Let the polynomial $f(x)=x^2+ax+b$, where $a,b$ integers and $k$ is a positive integer. Suppose that the integers
$m,n,p$ satisfy: $f(m), f(n), f(p)$ are divisible by k. Prove that:
$(m-n)(n-p)(p-m)$ is divisible by k
1 reply
kellyelliee
Today at 3:57 AM
Jackson0423
5 hours ago
Sum of digits is 18
Ecrin_eren   14
N 5 hours ago by jestrada
How many 5 digit numbers are there such that sum of its digits is 18
14 replies
Ecrin_eren
May 3, 2025
jestrada
5 hours ago
IOQM 2022-23 P-7
lifeismathematics   2
N 6 hours ago by Adywastaken
Find the number of ordered pairs $(a,b)$ such that $a,b \in \{10,11,\cdots,29,30\}$ and
$\hspace{1cm}$ $GCD(a,b)+LCM(a,b)=a+b$.
2 replies
lifeismathematics
Oct 30, 2022
Adywastaken
6 hours ago
Inequalities
sqing   7
N Today at 10:31 AM by sqing
Let $ a,b,c>0 $ and $ a+b\leq 16abc. $ Prove that
$$ a+b+kc^3\geq\sqrt[4]{\frac{4k} {27}}$$$$ a+b+kc^4\geq\frac{5} {8}\sqrt[5]{\frac{k} {2}}$$Where $ k>0. $
$$ a+b+3c^3\geq\sqrt{\frac{2} {3}}$$$$ a+b+2c^4\geq \frac{5} {8}$$
7 replies
1 viewing
sqing
Yesterday at 12:46 PM
sqing
Today at 10:31 AM
China MO 1996 p1
math_gold_medalist28   1
N Today at 9:58 AM by MathsII-enjoy
Let ABC be a triangle with orthocentre H. The tangent lines from A to the circle with diameter BC touch this circle at P and Q. Prove that H, P and Q are collinear.
1 reply
math_gold_medalist28
May 2, 2025
MathsII-enjoy
Today at 9:58 AM
If it is an integer then perfect square
Ecrin_eren   1
N Today at 9:36 AM by Pal702004


"Let a, b, c, d be non-zero digits, and let abcd and dcba represent four-digit numbers.

Show that if the number abcd / dcba is an integer, then that integer is a perfect square."



1 reply
Ecrin_eren
May 1, 2025
Pal702004
Today at 9:36 AM
Problem 7 of Third round - Constructions with a ruler
Pinko   0
Sep 1, 2019
Source: VII International Festival of Young Mathematicians Sozopol 2016, Theme for 10-12 grade
We are given a ruler with two marks at a distance 1. With its help we can do all possible constructions as with a ruler with no measurements, including one more: If there is a line $l$ and point $A$ on $l$, then we can construct points $P_1,P_2\in l$ for which $AP_1=AP_2=1$. By using this ruler, construct a perpendicular from a given point to a given line.
0 replies
Pinko
Sep 1, 2019
0 replies
Problem 7 of Third round - Constructions with a ruler
G H J
G H BBookmark kLocked kLocked NReply
Source: VII International Festival of Young Mathematicians Sozopol 2016, Theme for 10-12 grade
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pinko
437 posts
#1 • 2 Y
Y by Adventure10, Mango247
We are given a ruler with two marks at a distance 1. With its help we can do all possible constructions as with a ruler with no measurements, including one more: If there is a line $l$ and point $A$ on $l$, then we can construct points $P_1,P_2\in l$ for which $AP_1=AP_2=1$. By using this ruler, construct a perpendicular from a given point to a given line.
This post has been edited 1 time. Last edited by Pinko, Sep 19, 2019, 8:04 AM
Z K Y
N Quick Reply
G
H
=
a