Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Central sequences
EeEeRUT   12
N 16 minutes ago by Ihatecombin
Source: EGMO 2025 P2
An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
12 replies
EeEeRUT
Apr 16, 2025
Ihatecombin
16 minutes ago
Functional Equation from IMO
prtoi   3
N 20 minutes ago by RevolveWithMe101
Source: IMO
Question: $f(2a)+2f(b)=f(f(a+b))$
Solve for f:Z-->Z
My solution:
At a=0, $f(0)+2f(b)=f(f(b))$
Take t=f(b) to get $f(0)+2t=f(t)$
Therefore, f(x)=2x+n where n=f(0)
Could someone please clarify if this is right or wrong?
3 replies
prtoi
Yesterday at 8:07 PM
RevolveWithMe101
20 minutes ago
inequality with roots
luci1337   0
38 minutes ago
Source: an exam in vietnam
let $a,b,c\geq0: a+b+c=1$
prove that $\Sigma\sqrt{a+(b-c)^2}\geq\sqrt{3}$
0 replies
luci1337
38 minutes ago
0 replies
G, L, H are collinear
Ink68   3
N 44 minutes ago by luci1337
Given an acute, non-isosceles triangle $ABC$. $B, C$ lie on a moving circle $(K)$. $(K)$ intersects $CA$ at $E$ and $BA$ at $F$. $BE, CF$ intersect at $G$. $KG, BC$ intersect at $D$. $L$ is the perpendicular image of $D$ with respect to $EF$. Prove that $G, L$ and the orthocenter $H$ are collinear.
3 replies
Ink68
2 hours ago
luci1337
44 minutes ago
Invertible Matrices
Mateescu Constantin   7
N Yesterday at 6:27 PM by CHOUKRI
Source: Romanian District Olympiad 2018 - Grade XI - Problem 1
Show that if $n\ge 2$ is an integer, then there exist invertible matrices $A_1, A_2, \ldots, A_n \in \mathcal{M}_2(\mathbb{R})$ with non-zero entries such that:

\[A_1^{-1} + A_2^{-1} + \ldots + A_n^{-1} = (A_1 + A_2 + \ldots + A_n)^{-1}.\]
Edit.
7 replies
Mateescu Constantin
Mar 10, 2018
CHOUKRI
Yesterday at 6:27 PM
A challenging sum
Polymethical_   2
N Yesterday at 6:19 PM by GreenKeeper
I tried to integrate series of log(1-x) / x
2 replies
Polymethical_
Yesterday at 4:09 AM
GreenKeeper
Yesterday at 6:19 PM
Analytic on C excluding countably many points
Omid Hatami   12
N Yesterday at 6:13 PM by alinazarboland
Source: IMS 2009
Let $ A\subset \mathbb C$ be a closed and countable set. Prove that if the analytic function $ f: \mathbb C\backslash A\longrightarrow \mathbb C$ is bounded, then $ f$ is constant.
12 replies
Omid Hatami
May 20, 2009
alinazarboland
Yesterday at 6:13 PM
2022 Putnam A2
giginori   20
N Yesterday at 6:06 PM by dragoon
Let $n$ be an integer with $n\geq 2.$ Over all real polynomials $p(x)$ of degree $n,$ what is the largest possible number of negative coefficients of $p(x)^2?$
20 replies
giginori
Dec 4, 2022
dragoon
Yesterday at 6:06 PM
fibonacci number theory
FFA21   1
N Yesterday at 2:53 PM by alexheinis
Source: OSSM Comp'25 P3 (HSE IMC qualification)
$F_n$ fibonacci numbers ($F_1=1, F_2=1$) find all n such that:
$\forall i\in Z$ and $0\leq i\leq F_n$
$C^i_{F_n}\equiv (-1)^i\pmod{F_n+1}$
1 reply
FFA21
May 14, 2025
alexheinis
Yesterday at 2:53 PM
Tough integral
Martin.s   3
N Friday at 9:42 PM by GreenKeeper
$$\int_0^{\pi/2}\ln(\tan(\theta/2))
\;\frac{4\cos\theta\cos(2\theta)}{4\sin^4\theta+1}\,d\theta.$$
3 replies
Martin.s
May 12, 2025
GreenKeeper
Friday at 9:42 PM
Integral
Martin.s   1
N Friday at 5:01 PM by Martin.s
$$\int_0^{\pi/6}\arcsin\Bigl(\sqrt{\cos(3\psi)\cos\psi}\Bigr)\,d\psi.$$
1 reply
1 viewing
Martin.s
May 14, 2025
Martin.s
Friday at 5:01 PM
integrals
FFA21   3
N Friday at 2:48 PM by Rohit-2006
Source: OSSM Comp'25 P1 (HSE IMC qualification)
Find all continuous functions $f:[1,8]\to R$ that:
$\int_1^2f(t^3)^2dt+2\int_1^2sin(t)f(t^3)dt=\frac{2}{3}\int_1^8f(t)dt-\int_1^2(t^2-sin(t))^2dt$
3 replies
FFA21
May 14, 2025
Rohit-2006
Friday at 2:48 PM
Number of roots of boundary preserving unit disk maps
Assassino9931   3
N May 16, 2025 by bsf714
Source: Vojtech Jarnik IMC 2025, Category II, P4
Let $D = \{z\in \mathbb{C}: |z| < 1\}$ be the open unit disk in the complex plane and let $f : D \to D$ be a holomorphic function such that $\lim_{|z|\to 1}|f(z)| = 1$. Let the Taylor series of $f$ be $f(z) = \sum_{n=0}^{\infty} a_nz^n$. Prove that the number of zeroes of $f$ (counted with multiplicities) equals $\sum_{n=0}^{\infty} n|a_n|^2$.
3 replies
Assassino9931
May 2, 2025
bsf714
May 16, 2025
|A/pA|<=p, finite index=> isomorphism - OIMU 2008 Problem 7
Jorge Miranda   2
N May 15, 2025 by pi_quadrat_sechstel
Let $A$ be an abelian additive group such that all nonzero elements have infinite order and for each prime number $p$ we have the inequality $|A/pA|\leq p$, where $pA = \{pa |a \in A\}$, $pa = a+a+\cdots+a$ (where the sum has $p$ summands) and $|A/pA|$ is the order of the quotient group $A/pA$ (the index of the subgroup $pA$).

Prove that each subgroup of $A$ of finite index is isomorphic to $A$.
2 replies
Jorge Miranda
Aug 28, 2010
pi_quadrat_sechstel
May 15, 2025
Two equal common tangents are perpendicular
bigant146   3
N Feb 20, 2021 by rafaello
Source: 2020 Caucasus Mathematical Olympiad
Let $\omega_1$ and $\omega_2$ be two non-intersecting circles. Let one of its internal tangents touches $\omega_1$ and $\omega_2$ at $A_1$ and $A_2$, respectively, and let one of its external tangents touches $\omega_1$ and $\omega_2$ at $B_1$ and $B_2$, respectively. Prove that if $A_1B_2 = A_2B_1$, then $A_1B_2 \perp A_2B_1$.
3 replies
bigant146
Mar 16, 2020
rafaello
Feb 20, 2021
Two equal common tangents are perpendicular
G H J
G H BBookmark kLocked kLocked NReply
Source: 2020 Caucasus Mathematical Olympiad
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bigant146
111 posts
#1
Y by
Let $\omega_1$ and $\omega_2$ be two non-intersecting circles. Let one of its internal tangents touches $\omega_1$ and $\omega_2$ at $A_1$ and $A_2$, respectively, and let one of its external tangents touches $\omega_1$ and $\omega_2$ at $B_1$ and $B_2$, respectively. Prove that if $A_1B_2 = A_2B_1$, then $A_1B_2 \perp A_2B_1$.
This post has been edited 1 time. Last edited by bigant146, Mar 16, 2020, 8:49 AM
Reason: delete ~
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#2
Y by
Easy problem.

Proof: Clearly we have that if $I= \overline{A_1A_2} \cap \overline{B_1B_2}$ then $\Delta IB_1A_2 \cong \Delta IA_1B_2$ since $\overline{IA_2}=\overline{IB_2}$ and also $\overline{IA_1} =\overline{IB_1}$ and $\overline{A_1B_2}=\overline{A_2B_1}$. From here we get that $\overline{A_1A_2} \perp \overline{B_1B_2}$ and also $\angle IA_2B_1=\angle IB_2A_1 $ $\implies$ that if $\overline{A_2B_1} \cap \overline{A_1B_2}=G$ then $(IA_2B_2G)$ concyclic. From here the result follows since $\angle A_2GB_2=\angle A_2IB_2=90^\circ$. $\blacksquare$.

PS
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Afo
1002 posts
#3
Y by
Clearly we have that if $I= \overline{A_1A_2} \cap \overline{B_1B_2}$ then $\Delta IB_1A_2 \cong \Delta IA_1B_2$ since $\overline{IA_2}=\overline{IB_2}$ and also $\overline{IA_1} =\overline{IB_1}$ and $\overline{A_1B_2}=\overline{A_2B_1}$ and so $\angle A_2IB_1 = \angle A_2IB_2 \implies A_1A_2 \perp B_1B_2$. Let $A_1B_2 \cap A_2B_1=D$. Then $\triangle A_2A_1D \sim A_2B_1I (AAA) \implies A_2B_1 \perp A_1B_2$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rafaello
1079 posts
#4
Y by
Outline.
Let $X=A_1A_2 \cap B_1B_2$. Let $B_1'$ be the point on $B_1B_2$, so that $XB_1=XB_1'$. Thus, we have $XA_1=XB_1=XB_1'$ and since $XA_2=XB_2$, we get that $A_1B_1' \parallel A_2B_2$ and since $\angle B_1A_1B_1'=90^\circ$, we get that $A_1B_1\perp A_2B_2$.

We also have that $A_2B_2=B_2A_1=A_2B_1'$, therefore $\triangle B_1A_2B_1'$ is isosceles and since $X$ is the midpoint of $B_1B_1'$, we have that $A_1A_2\perp B_1B_2$, hence $A_1$ is the orthocentre of $\triangle B_1A_2B_2$, hence $A_1B_2 \perp A_2B_1$. $ \square$
Z K Y
N Quick Reply
G
H
=
a