Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
inequality 11
sadwinter   7
N 4 minutes ago by sadwinter
Not hard?
7 replies
sadwinter
Aug 18, 2021
sadwinter
4 minutes ago
m-n and 2m+2n+1 are perfect squares
AnormalGUY   3
N 6 minutes ago by ilikemath247365
let m,n belongs to natural numbers , such that

2m^2+m=3n^2+n

then prove that m-n and 2m+2n+1 are perfect squares .also find the integral solution of 2m^2+m=3n^2+n
(i am newbie and didnt got the answer to this question in search so i asked .plz correct me if a problem exists)
3 replies
AnormalGUY
an hour ago
ilikemath247365
6 minutes ago
2 years ago
sadwinter   0
10 minutes ago
Source: Vasile Cîrtoaje
I have 2 solutions
:showoff:
0 replies
sadwinter
10 minutes ago
0 replies
IMO Shortlist 2014 N2
hajimbrak   34
N 13 minutes ago by cursed_tangent1434
Determine all pairs $(x, y)$ of positive integers such that \[\sqrt[3]{7x^2-13xy+7y^2}=|x-y|+1.\]
Proposed by Titu Andreescu, USA
34 replies
hajimbrak
Jul 11, 2015
cursed_tangent1434
13 minutes ago
No more topics!
Sum of angles are equal
mofumofu   18
N Apr 27, 2025 by zuat.e
Source: China Mathematical Olympiad 2021 P4
In acute triangle $ABC (AB>AC)$, $M$ is the midpoint of minor arc $BC$, $O$ is the circumcenter of $(ABC)$ and $AK$ is its diameter. The line parallel to $AM$ through $O$ meets segment $AB$ at $D$, and $CA$ extended at $E$. Lines $BM$ and $CK$ meet at $P$, lines $BK$ and $CM$ meet at $Q$. Prove that $\angle OPB+\angle OEB =\angle OQC+\angle ODC$.
18 replies
mofumofu
Nov 25, 2020
zuat.e
Apr 27, 2025
Sum of angles are equal
G H J
G H BBookmark kLocked kLocked NReply
Source: China Mathematical Olympiad 2021 P4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mofumofu
179 posts
#1 • 3 Y
Y by A-Thought-Of-God, Rounak_iitr, ItsBesi
In acute triangle $ABC (AB>AC)$, $M$ is the midpoint of minor arc $BC$, $O$ is the circumcenter of $(ABC)$ and $AK$ is its diameter. The line parallel to $AM$ through $O$ meets segment $AB$ at $D$, and $CA$ extended at $E$. Lines $BM$ and $CK$ meet at $P$, lines $BK$ and $CM$ meet at $Q$. Prove that $\angle OPB+\angle OEB =\angle OQC+\angle ODC$.
This post has been edited 2 times. Last edited by mofumofu, Mar 11, 2021, 9:53 AM
Reason: typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ACGNmath
327 posts
#3 • 4 Y
Y by Pluto1708, shalomrav, ItsBesi, Rounak_iitr
mofumofu wrote:
The line parallel to $AM$ through $D$ meets segment $AB$ at $D$,...

Typo?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SpecialBeing2017
249 posts
#4 • 1 Y
Y by Rounak_iitr
The key observation is to show
This post has been edited 3 times. Last edited by SpecialBeing2017, Dec 23, 2020, 4:41 AM
Reason: X
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AFO_tony1107
32 posts
#5 • 1 Y
Y by Rounak_iitr
∠POM=∠ACD
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AFO_tony1107
32 posts
#6 • 1 Y
Y by Rounak_iitr
We only need to prove that angle ACD=angle POM.
Using trigonometric functions
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Blastzit
32 posts
#7 • 1 Y
Y by ehuseyinyigit
I complex bashed this during the contest... the computations should have been easy but somehow I keep messing up arithmetics :/ Hope I can receive a 7 on it lol.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dagezjm
88 posts
#8 • 3 Y
Y by Functional_equation, buratinogigle, Rounak_iitr
I will prove its generalization below. :)

Generalization: Given a $\triangle ABC$ with its circumcenter $O$, orthocenter $H$, and circumcircle $c$. $D$ is a point lying on arc $BC$ of $c$ and $D'$ is its reflection point WRT $BC$. $A'A$ is a diameter of $c$. A line passing through $O$ which is perpendicular to $HD'$ inter sects $AC$, $AB$ at $E$, $F$ respectively. Suppose $BD\cap CA'=P$, $CD\cap BA'=Q$. Prove that $\angle OEB+\angle OPB=\angle OFC+\angle OQC$.

Proof. Suppose the reflection point of $H$ WRT $BC$ is $H'$, then $\angle BFO=\angle AHD'-\angle ABC=180^\circ-\angle AH'D-\angle ABC=\angle ABD-\angle ABC=\angle PBC$. Now by $\angle FBO=90^\circ-\angle ACB=\angle PCB$ we get $\triangle OBF\stackrel{-}{\sim}\triangle PCB$, so$\dfrac{FB}{CB}=\dfrac{BO}{CP}=\dfrac{CO}{CP}$. Then by $\angle OCP=\angle ABC$ we have $\triangle FBC\stackrel{-}{\sim}\triangle OCP$, so$\angle OPC=\angle FCB$. Similarly we have $\angle OQB=\angle EBC$, hence $\angle OEB+\angle OPB=\angle OEB+\angle BPC-\angle OPC=\angle OEB+\angle BOE-\angle FCB=180^\circ-\angle EBO-\angle FCO-\angle BCO$. By $\angle OBC=\angle OCB$ it's obvious to see $\angle OFC+\angle OQC$ has the same expression. So $\angle OEB+\angle OPB=\angle OFC+\angle OQC$. $\quad\Box$
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#9 • 4 Y
Y by teomihai, A-Thought-Of-God, richrow12, Rounak_iitr
Very nice problem :D. It is glad to see that there are finally some nice problems appearing on the CMO
[asy]
size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -25.760433772373926, xmax = 18.737430145278708, ymin = -26.36714817636629, ymax = 11.432112570887025;  /* image dimensions */pen zzttqq = rgb(0.6,0.2,0); draw((-12.88157172452285,-8.344715836958592)--(-1.7044176212692368,-11.395787089657654)--(-4.908070810890858,-4.502571184832435)--cycle, linewidth(0.8) + zzttqq); draw((-12.88157172452285,-8.344715836958592)--(-3.5699087015309274,-0.8567019520006959)--(2.7485023397422332,-8.942805405744245)--cycle, linewidth(0.8) + zzttqq); draw((2.7485023397422332,-8.942805405744245)--(-2.855762980493301,-14.913373749478474)--(-4.908070810890858,-4.502571184832435)--cycle, linewidth(0.8) + blue); draw((2.7485023397422332,-8.942805405744245)--(-12.88157172452285,-8.344715836958592)--(-0.44421935937243345,7.659347429652019)--cycle, linewidth(0.8) + blue);  /* draw figures */draw(circle((-4.908070810890858,-4.502571184832435), 8.850920423749828), linewidth(0.8)); draw((0.5555072541948364,2.460769039102218)--(-5.246506306683519,-13.347018808213976), linewidth(0.8)); draw((-0.44421935937243345,7.659347429652019)--(2.7485023397422332,-8.942805405744245), linewidth(0.8)); draw((2.7485023397422332,-8.942805405744245)--(-12.88157172452285,-8.344715836958592), linewidth(0.8)); draw((-12.88157172452285,-8.344715836958592)--(0.5555072541948364,2.460769039102218), linewidth(0.8)); draw((-4.908070810890858,-4.502571184832435)--(-0.44421935937243345,7.659347429652019), linewidth(0.8)); draw((-10.371648875976552,-11.465911408767088)--(2.7485023397422332,-8.942805405744245), linewidth(0.8)); draw((-5.246506306683519,-13.347018808213976)--(-12.88157172452285,-8.344715836958592), linewidth(0.8)); draw((-12.88157172452285,-8.344715836958592)--(-7.74995749121634,-14.726095898302848), linewidth(0.8)); draw((-7.74995749121634,-14.726095898302848)--(2.7485023397422332,-8.942805405744245), linewidth(0.8)); draw((-4.908070810890858,-4.502571184832435)--(-8.629126642062003,-11.130810979168137), linewidth(0.8)); draw((-4.908070810890858,-4.502571184832435)--(-7.74995749121634,-14.726095898302848), linewidth(0.8)); draw((-4.908070810890858,-4.502571184832435)--(-12.88157172452285,-8.344715836958592), linewidth(0.8)); draw((-4.908070810890858,-4.502571184832435)--(2.7485023397422332,-8.942805405744245), linewidth(0.8)); draw((-5.246506306683519,-13.347018808213976)--(-4.908070810890858,-4.502571184832435), linewidth(0.8)); draw((-12.88157172452285,-8.344715836958592)--(-1.7044176212692368,-11.395787089657654), linewidth(0.8) + zzttqq); draw((-1.7044176212692368,-11.395787089657654)--(-4.908070810890858,-4.502571184832435), linewidth(0.8) + zzttqq); draw((-4.908070810890858,-4.502571184832435)--(-12.88157172452285,-8.344715836958592), linewidth(0.8) + zzttqq); draw((-12.88157172452285,-8.344715836958592)--(-3.5699087015309274,-0.8567019520006959), linewidth(0.8) + zzttqq); draw((-3.5699087015309274,-0.8567019520006959)--(2.7485023397422332,-8.942805405744245), linewidth(0.8) + zzttqq); draw((2.7485023397422332,-8.942805405744245)--(-12.88157172452285,-8.344715836958592), linewidth(0.8) + zzttqq); draw((2.7485023397422332,-8.942805405744245)--(-2.855762980493301,-14.913373749478474), linewidth(0.8) + blue); draw((-2.855762980493301,-14.913373749478474)--(-4.908070810890858,-4.502571184832435), linewidth(0.8) + blue); draw((-4.908070810890858,-4.502571184832435)--(2.7485023397422332,-8.942805405744245), linewidth(0.8) + blue); draw((2.7485023397422332,-8.942805405744245)--(-12.88157172452285,-8.344715836958592), linewidth(0.8) + blue); draw((-12.88157172452285,-8.344715836958592)--(-0.44421935937243345,7.659347429652019), linewidth(0.8) + blue); draw((-0.44421935937243345,7.659347429652019)--(2.7485023397422332,-8.942805405744245), linewidth(0.8) + blue);  /* dots and labels */dot((0.5555072541948364,2.460769039102218),dotstyle); label("$A$", (0.7149978058710107,2.8594954182926537), NE * labelscalefactor); dot((-12.88157172452285,-8.344715836958592),dotstyle); label("$B$", (-12.722081172846675,-7.945989457768157), NE * labelscalefactor); dot((2.7485023397422332,-8.942805405744245),dotstyle); label("$C$", (2.9079928914184077,-8.54407902655381), NE * labelscalefactor); dot((-5.246506306683519,-13.347018808213976),linewidth(4pt) + dotstyle); label("$M$", (-5.106407330309352,-13.00981447348669), NE * labelscalefactor); dot((-4.908070810890858,-4.502571184832435),linewidth(4pt) + dotstyle); label("$O$", (-4.74755358903796,-4.19796149337806), NE * labelscalefactor); dot((-3.5699087015309274,-0.8567019520006959),linewidth(4pt) + dotstyle); label("$D$", (-4.428572485685611,-0.29044297731178914), NE * labelscalefactor); dot((-0.44421935937243345,7.659347429652019),linewidth(4pt) + dotstyle); label("$E$", (-0.2818181421050788,7.963193071930232), NE * labelscalefactor); dot((-10.371648875976552,-11.465911408767088),dotstyle); label("$K$", (-10.21010498394693,-11.056055215453556), NE * labelscalefactor); dot((-8.629126642062003,-11.130810979168137),linewidth(4pt) + dotstyle); label("$P$", (-8.455708915509012,-10.816819387939294), NE * labelscalefactor); dot((-7.74995749121634,-14.726095898302848),linewidth(4pt) + dotstyle); label("$Q$", (-7.578510881290054,-14.405356800653216), NE * labelscalefactor); dot((-1.7044176212692368,-11.395787089657654),linewidth(4pt) + dotstyle); label("$P'$", (-1.5577425555144733,-11.095927853372599), NE * labelscalefactor); dot((-2.855762980493301,-14.913373749478474),linewidth(4pt) + dotstyle); label("$Q'$", (-2.714049055166737,-14.604719990248434), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
Reflect $P,Q$ about $OM$. Let the images be $P',Q'$.
CLAIM. $\triangle BP'C\sim \triangle BOD$.
Proof.
$$\angle OBD=\angle OBA=90^{\circ}-\angle ACB=\angle PCB=\angle P'BC$$$$\angle ODB=\angle \frac{A}{2}=\angle PBC=\angle P'CB$$$\blacksquare$
Hence by spiral similarlity, $$\triangle BOP'\sim\triangle BDC$$by symmetry
$$\triangle COQ'\sim\triangle CEB$$Therefore,
\begin{align*}
\angle ODC-\angle OEB&=\angle BDC-\angle BEC\\
&=\angle BOP'-\angle COQ'\\
&=\angle COP-\angle BOQ\\
&=\angle COQ-\angle BOP\\
&=\angle COQ+\angle OCM-\angle BOP-\angle OBM\\
&=\angle OPB-\angle OQC
\end{align*}as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mofumofu
179 posts
#10 • 5 Y
Y by teomihai, AllanTian, A-Thought-Of-God, phungthienphuoc, Rounak_iitr
We can do this without adding any new points.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(8cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -11.901290277705847, xmax = 9.305896528866802, ymin = -4.489218186120455, ymax = 5.75976324105597;  /* image dimensions */
pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen ccqqqq = rgb(0.8,0,0); 
 /* draw figures */
draw(circle((-3.3794468732347838,0.02150745469193483), 2.9257190932612667), linewidth(0.8)); 
draw((-6.197157528301625,-0.7661084904211123)--(-0.5840481738347059,-0.8419613195355301), linewidth(0.8) + fuqqzz); 
draw((-1.7218406105509734,2.4323524705701725)--(-5.037053135918594,-2.3893375611863026), linewidth(0.8)); 
draw((-1.7218406105509734,2.4323524705701725)--(-3.4189800082304322,-2.9039445349860604), linewidth(0.8)); 
draw((-2.186987944921559,3.770943132814413)--(-0.5840481738347059,-0.8419613195355301), linewidth(0.8)); 
draw((-6.197157528301625,-0.7661084904211123)--(-4.241631619773757,-3.5022988920767077), linewidth(0.8)); 
draw((-0.5840481738347059,-0.8419613195355301)--(-4.241631619773757,-3.5022988920767077), linewidth(0.8)); 
draw((-3.3794468732347838,0.02150745469193483)--(-6.197157528301625,-0.7661084904211123), linewidth(0.8) + ccqqqq); 
draw((-3.3794468732347838,0.02150745469193483)--(-3.4189800082304322,-2.9039445349860604), linewidth(0.8)); 
draw((-3.3794468732347838,0.02150745469193483)--(-0.5840481738347059,-0.8419613195355301), linewidth(0.8)); 
draw((-6.197157528301625,-0.7661084904211123)--(-4.383054495953997,-2.1620793465267902), linewidth(0.8) + fuqqzz); 
draw((-4.383054495953997,-2.1620793465267902)--(-3.4189800082304322,-2.9039445349860604), linewidth(0.8)); 
draw((-4.383054495953997,-2.1620793465267902)--(-0.5840481738347059,-0.8419613195355301), linewidth(0.8) + fuqqzz); 
draw((-4.383054495953997,-2.1620793465267902)--(-5.037053135918594,-2.3893375611863026), linewidth(0.8)); 
draw((-2.8747664038685494,1.608368782125691)--(-3.3794468732347838,0.02150745469193483), linewidth(0.8) + ccqqqq); 
draw((-2.186987944921559,3.770943132814413)--(-2.8747664038685494,1.608368782125691), linewidth(0.8)); 
draw((-6.197157528301625,-0.7661084904211123)--(-2.8747664038685494,1.608368782125691), linewidth(0.8) + ccqqqq); 
draw((-2.8747664038685494,1.608368782125691)--(-1.7218406105509734,2.4323524705701725), linewidth(0.8)); 
draw((-3.3794468732347838,0.02150745469193483)--(-4.383054495953997,-2.1620793465267902), linewidth(0.8)); 
draw((-2.8747664038685494,1.608368782125691)--(-0.5840481738347059,-0.8419613195355301), linewidth(0.8)); 
draw((-3.3794468732347838,0.02150745469193483)--(-4.241631619773757,-3.5022988920767077), linewidth(0.8)); 
draw((-2.186987944921559,3.770943132814413)--(-6.197157528301625,-0.7661084904211123), linewidth(0.8));
 /* dots and labels */
dot((-1.7218406105509734,2.4323524705701725),dotstyle); 
label("$A$", (-1.6662152025337342,2.5752086320689944), NE * labelscalefactor); 
dot((-6.197157528301625,-0.7661084904211123),dotstyle); 
label("$B$", (-6.1440605479215336,-0.6232523289222914), NE * labelscalefactor); 
dot((-0.5840481738347059,-0.8419613195355301),dotstyle); 
label("$C$", (-0.5258943381803196,-0.706690440948151), NE * labelscalefactor); 
dot((-3.3794468732347838,0.02150745469193483),linewidth(4pt) + dotstyle); 
label("$O$", (-3.3210710910466164,0.12769067931044525), NE * labelscalefactor); 
dot((-3.4189800082304322,-2.9039445349860604),linewidth(4pt) + dotstyle); 
label("$M$", (-3.3627901470595463,-2.7926432415946416), NE * labelscalefactor); 
dot((-5.037053135918594,-2.3893375611863026),dotstyle); 
label("$K$", (-4.975926979559499,-2.250295513426554), NE * labelscalefactor); 
dot((-4.383054495953997,-2.1620793465267902),linewidth(4pt) + dotstyle); 
label("$P$", (-4.322328435356932,-2.055606585366215), NE * labelscalefactor); 
dot((-4.241631619773757,-3.5022988920767077),linewidth(4pt) + dotstyle); 
label("$Q$", (-4.183264915313832,-3.390616377779969), NE * labelscalefactor); 
dot((-2.8747664038685494,1.608368782125691),linewidth(4pt) + dotstyle); 
label("$D$", (-2.8204424188914587,1.7130148078017782), NE * labelscalefactor); 
dot((-2.186987944921559,3.770943132814413),linewidth(4pt) + dotstyle); 
label("$E$", (-2.125124818675962,3.8824057204741287), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

First note $\angle PCB=\angle KAB=\angle OBD$ and $\angle PBC=\angle MAB=\angle BDO$, hence $\triangle BOD \sim \triangle CPB$, from which we get $\frac{BO}{BD}=\frac{CP}{CB}\implies \frac{CO}{CP}=\frac{BD}{BC}$. Now $\angle OCP=90^{\circ} - \angle OCA = \angle DBC$, thus $\triangle BCD\sim \triangle CPO$. Similarly $\triangle CBE\sim \triangle BQO$. Finally we can chase:

\begin{align*}
\angle OPB-\angle OQC&=(\angle OBP +\angle OPB)-(\angle OCQ + \angle OQC)\\
&=(180^{\circ}-\angle BOP)-(180^{\circ}-\angle COQ)\\
&=\angle COP-\angle BOQ\\
&=\angle BDC-\angle BEC\\
&=(\angle ODC+\angle ADE)-(\angle OEB+\angle AED)\\
&=\angle ODC-\angle OEB
\end{align*}
and we are done.
This post has been edited 1 time. Last edited by mofumofu, Dec 12, 2020, 6:13 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tintarn
9045 posts
#11 • 1 Y
Y by Modesti
Here is my solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
srijonrick
168 posts
#13 • 2 Y
Y by A-Thought-Of-God, Rounak_iitr
In acute triangle $ABC (AB>AC)$, $M$ is the midpoint of minor arc $BC$, $O$ is the circumcenter of $(ABC)$ and $AK$ is its diameter. The line parallel to $AM$ through $O$ meets segment $AB$ at $D$, and $CA$ extended at $E$. Lines $BM$ and $CK$ meet at $P$, lines $BK$ and $CM$ meet at $Q$. Prove that $\angle OPB+\angle OEB =\angle OQC+\angle ODC$.

Solved with A-Thought-Of-God. Diagram

We start by noting the following: \[\angle PCB = \angle KCB = \angle  KAB = \angle OAB = \angle OBA = \angle OBD,\]and \[\angle PBC = \angle MBC = \angle MCB = \angle MAB = \angle ODB.\]So, we have $\triangle BPC \sim \triangle DOB - (1).$ Similarly, $\triangle CQB \sim \triangle EOC - (2)$. We further observe that, as \[\frac{BC}{DB} = \frac{PC}{OB} = \frac{PC}{OC},\]here we get $\triangle CPO \sim \triangle BCD - (3)$, as $\angle OCP=90^{\circ} - \angle OCA = \angle DBC$. Likewise, $\triangle CBE \sim \triangle BQO - (4)$. Now, we note that as $\angle OQC = \angle BQC - \angle BQO$, and
\begin{align*}
\angle BQC \overset{(2)}{=} \angle COE = \angle COA + \angle AOE  = 2\angle B + \angle AOD &= 2\angle B + \left(180^{\circ} - \overline{\angle ODA + \angle OAB} \right)
\\&= 2\angle B + \cancel{180^{\circ}} - (\cancel{180^{\circ}} - \angle BAM) - (90^{\circ} - \angle C)
\\&= 2\angle B + \angle A/2 - 90^{\circ} + \angle C
\\&= 90^{\circ} + \angle B - \angle A/2
\end{align*}also, $\angle BQO \overset{(4)}{=} \angle EBC = 180^{\circ}- \angle C - (\angle A/2 + \angle BEO).$ Whence, \[\angle OQC + \angle ODC = 90^{\circ} - \angle A + \angle BEO + \angle ODC\quad(*).\]Next, \[\angle OPB + \angle OPC = \angle BPC \overset{(1)}{=} \angle DOB  = 180^{\circ} - \angle OBD - \angle BAM = 90^{\circ}+\angle C - \frac{A}{2}\]yields
\begin{align*}
\angle OPB  = 90^{\circ}+\angle C - \frac{A}{2} - \angle OPC &\overset{(3)}{=} 90^{\circ}+\angle C - \frac{A}{2} - \angle DCB 
\\&= 90^{\circ}+\angle C - \cancel{\frac{A}{2}} - \left\{180^{\circ}-\angle B - \left(\cancel{\frac{\angle A}{2}} + \angle ODC \right) \right\}
\\&= 90^{\circ} - \angle A+\angle ODC.
\end{align*}Adding $\angle OEB$ to both sides of the above equation, and comparing it with $(*)$ gets us done. $\blacksquare$

Remarks: $\triangle ADE$ is isosceles with $AD=AE$; also $\triangle FKM$ is isosceles, with $FK=FM$, where $F$ is $OD \cap CM.$ Further, if we let $BM \cap OD$ as $G$, we get a couple of cyclic quadrilaterals, namely, $(BKGO), (COKF), (BECG)$, and $(BDCF)$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
alexiaslexia
110 posts
#14 • 3 Y
Y by MeineMeinung, JG666, Rounak_iitr
Got recommended this by @MeineMeinung --- saying that this resembles the third problem of APMO 2021. I agree, albeit in a completely different manner.

First Comment: A lot of available angles yet none of the four relates to each other (at first glance). Solution for this? Rotate existing same angles forming similar triangles.

$\color{green} \rule{3.9cm}{2pt}$
$\color{green} \diamondsuit$ $\boxed{\textbf{Angle Spotting.}}$ $\color{green} \diamondsuit$
$\color{green} \rule{3.9cm}{2pt}$
We point out sets of angles which measure the same, and make the problem more-spiral-similarity-friendly.
$\color{green} \rule{3.9cm}{0.2pt}$
Since $\overline{OD}, \overline{OE}$ are segments from the same line and $OD,OE \parallel AM$, then
\[ \angle ODB = \angle MAB = \dfrac{\angle A}{2} = \angle CAM = \angle CEO. \]Also, $(ACMB)$ concylic and $\overline{AM}$ internal angle bisector implies
\[ \angle MCB = \angle MBC = \angle MAC = \dfrac{\angle A}{2}. \]For simplicity, call $\frac{\angle A}{2} = \alpha$.

Notes 1.

The next most important angles are the following:
\[ \angle DBO = \angle PCB = 90 - \angle C, \angle ECO = \angle QBC = 90 - \angle B. \]From here, we can see that $\triangle DOB \sim \triangle BPC$, oppositely oriented. This also holds for its $E,C,Q$ counterpart.

Since two similar triangles which are oppositely oriented and $\textsf{almost rotate-able}$ with each other are rare, let's transform this to a almost-too-good-to-be-true spiral! Namely, draw $P'$ so that $BCPP'$ is an isosceles trapezoid with bases $BC$ an $PP'$.

The beauty of this transformation is not only the triangles behave relatively better with themselves, $\angle OPB$ can be substituted with $\angle OP'C$! Also do this with $Q$.

Now, the problem is equivalent to
\[ \angle OP'C + \angle OEB = \angle OQ'B + \angle ODC \Longleftrightarrow \angle OP'C - \angle ODC = \angle OQ'B - \angle OEB. \]Notes 2.

Let's proceed to the next part. $\blacksquare$
[asy]usepackage("tikz");label("\begin{tikzpicture}[scale = 0.65]
\definecolor{qqwuqq}{rgb}{0,0.39215686274509803,0}
\definecolor{wwccqq}{rgb}{0.4,0.8,0}
\definecolor{qqffqq}{rgb}{0,1,0}
\definecolor{ffwwzz}{rgb}{1,0.4,0.6}
\definecolor{uuuuuu}{rgb}{0.26666666666666666,0.26666666666666666,0.26666666666666666}
\definecolor{xdxdff}{rgb}{0.49019607843137253,0.49019607843137253,1}
\definecolor{qqqqff}{rgb}{0,0,1}
\definecolor{ffqqqq}{rgb}{1,0,0}
\draw [shift={(-11.3,1.88)},line width=1.2pt,color=qqwuqq,fill=qqwuqq] (0,0) -- (-84.52537055466388:0.686753540246397) arc (-84.52537055466388:-25.465824821839103:0.686753540246397) -- cycle;
\draw [shift={(-7.5356480505795576,4.838651211801895)},line width=1.2pt,color=qqwuqq,fill=qqwuqq] (0,0) -- (-121.78927858792538:0.686753540246397) arc (-121.78927858792538:-62.729732855100615:0.686753540246397) -- cycle;
\draw [line width=1.2pt,color=qqqqff] (-7.47339189232579,0.8853851626876496) circle (3.9537562246956854cm);
\draw [line width=1.2pt] (-9.809314204555646,1.1700704730699314)-- (-3.68,2);
\draw [line width=1.2pt] (-9.809314204555646,1.1700704730699314)-- (-10.644581592089562,-4.958518600212782);
\draw [line width=1.2pt] (-11.3,1.88)-- (-10.644581592089562,-4.958518600212782);
\draw [line width=1.2pt] (-9.809314204555646,1.1700704730699314)-- (-7.5356480505795576,4.838651211801895);
\draw [line width=1.2pt,dash pattern=on 3.3pt off 3.3pt] (-7.5356480505795576,4.838651211801895)-- (-4.289469838908575,-1.458719920725505);
\draw [line width=1.2pt] (-0.2914508711761002,-3.362750752101135)-- (-7.5356480505795576,4.838651211801895);
\draw [line width=1.2pt] (-10.644581592089562,-4.958518600212782)-- (-7.5356480505795576,4.838651211801895);
\draw [line width=1.2pt] (-6.199225578000374,-2.4431636416667737) circle (5.107660977343825cm);
\draw [line width=1.2pt,color=ffwwzz] (-11.58011524725957,9.411079114944625)-- (1.2011938830615474,-2.579036243211948);
\draw [line width=1.2pt,color=qqffqq] (-10.644581592089562,-4.958518600212782)-- (-1.1186822401924816,-2.9687871306174727);
\draw [line width=1.2pt,color=wwccqq] (-4.289469838908575,-1.458719920725505)-- (-3.68,2);
\draw [line width=1.2pt,color=wwccqq] (-3.68,2)-- (-1.1186822401924816,-2.9687871306174727);
\draw [line width=1.2pt,color=qqffqq] (-9.809314204555646,1.1700704730699314)-- (-4.289469838908575,-1.458719920725505);
\draw [line width=1.2pt] (-13.674883655738798,3.0110230736652452)-- (-11.3,1.88);
\draw [line width=1.2pt] (-1.1186822401924816,-2.9687871306174727)-- (1.1309979222910727,-4.040182845513803);
\draw [line width=1.2pt,dash pattern=on 3.3pt off 3.3pt] (-1.1186822401924816,-2.9687871306174727)-- (-4.289469838908575,-1.458719920725505);
\draw [line width=1.2pt,dash pattern=on 3.3pt off 3.3pt] (-11.3,1.88)-- (-9.809314204555646,1.1700704730699314);
\draw [line width=1.2pt] (-6.8068177342369935,8.065819696979265)-- (1.2088851023692926,-7.484113904533865);
\draw [line width=1.2pt] (0.7541100907591178,6.4302499918995455)-- (-13.616742300426106,-7.928091904554863);
\draw [line width=1.2pt,color=ffqqqq] (-13.607606081795005,1.8464156522551966)-- (0.4914432961795256,2.072936114900465);
\draw [line width=1.2pt,color=ffqqqq] (-7.561948007612051,6.508698483365212)-- (-7.314288780339739,-9.217662448426521);

\draw [fill=ffqqqq] (-11.3,1.88) circle (3.5pt);
\draw[color=ffqqqq] (-11.527874432090094,2.4847387982652116) node {$C$};
\draw [fill=ffqqqq] (-3.68,2) circle (3.5pt);
\draw[color=ffqqqq] (-3.4512908725077294,2.5947387982652116) node {$B$};
\draw [fill=ffqqqq] (-7.5356480505795576,4.838651211801895) circle (3.5pt);
\draw[color=ffqqqq] (-7.837110697887552,5.33042831327544) node {$O$};
\draw [fill=ffqqqq] (-4.289469838908575,-1.458719920725505) circle (2.4pt);
\draw[color=ffqqqq] (-4.200936197429006,-2.0244577972378112) node {$F_1$};
\draw [fill=xdxdff] (-9.809314204555646,1.1700704730699314) circle (2.4pt);
\draw[color=xdxdff] (-9.557613811350903,0.6707467323240984) node {$P'$};
\draw [fill=uuuuuu] (-10.644581592089562,-4.958518600212782) circle (2.4pt);
\draw[color=uuuuuu] (-11.324497661966896,-4.834606235622438) node {$D_R$};
\draw [fill=ffqqqq] (-1.1186822401924816,-2.9687871306174727) circle (2.4pt);
\draw[color=ffqqqq] (-1.6268138211182977,-3.4063977390310856) node {$F_2$};
\draw [fill=uuuuuu] (-10.614559541876705,8.505293629731504) circle (2pt);
\draw[color=uuuuuu] (-10.427501628996339,8.947330291906464) node {$A$};
\node[red] at (-6.45,-8.3) {Fig 1.};
\end{tikzpicture}");[/asy]
$\color{red} \rule{8cm}{2pt}$
$\color{red} \clubsuit$ $\color{red} \boxed{\textbf{Depersonalisation of} \ 90 - B \ \textbf{and} \ 90-C.}$ $\color{red} \clubsuit$
$\color{red} \rule{8cm}{2pt}$
Remove $A$, $E$ and $Q$ entirely from the picture, and consider the struture of the five points
\[ B,O,C; \quad D,P' \]We Claim that given $BO = OC$, $\triangle DOB \sim \triangle CP'B$ and
\[ \angle ODB = \angle P'CB = \alpha \](with $\angle A$'s definition to be half of $\angle BOC$ now), then
\[ \angle OP'C - \angle ODC = 90-A. \]$\color{red} \rule{25cm}{0.2pt}$
$\color{red} \spadesuit$ $\color{red} \boxed{\textbf{Proof.}}$ $\color{red} \spadesuit$
The bulk of the proof. Rotate the whole four-point configuration $D,O,C,B$ by $\angle DBC$ and resize it so that
\[ \text{The image of} \ \triangle DOB = \triangle CP'B. \]Name the image of $D$ to be $D_R$ (this name intends to say that $D_R$ is $D$, rotated).

Then add two fixed points of reference: let $F_1$ to be the point on $\overline{CP'}$ so that
\[ (COB) \cap \overline{CP'} = \{C,F_1\} \]and $F_2$ also on $\overline{CP'}$ so that $BF_2 \parallel OF_1$. Simple angle chasing gives us
\[ \angle CF_1O = \angle F_1F_2B = \angle F_1BF_2 = 90-A. \]
Thus, disregarding $\angle ODC$ and replacing it with its image, we are left to prove
\[ \angle D_RCP' = \angle P'OF_1. \]$\blacksquare$ $\blacksquare$
In fact, we Claim that $\triangle CD_R \sim OP'F_1$, directly implying the desired conclusion.

Notes 3.

Observe (repeated in Notes 3) that $\angle BF_2F_1 = \angle BD_RP'$, implying $(BP'D_RF_2)$ cyclic. In turn, this will cause
\[ \angle CF_2D_R = \angle P'F_2D_R = \angle P'BD_R = 90-A = \angle P'F_1O. \]Now we prove that
\[ \dfrac{OF_1}{P'F_1} = \dfrac{CF_2}{D_RF_2}, \ \text{or} \ \dfrac{OF_1}{CF_2} = \dfrac{PF_1}{D_RF_2}. \]We can count the LHS manually: repeated sine rule on the circle $(COBF_1)$ yields
\[ \text{LHS} = \dfrac{CF_1+F_1B}{F_1O} = \dfrac{\sin{(\alpha)}+\sin{(3\alpha)}}{\sin{(90-\alpha)}} = \dfrac{2 \sin{(2\alpha)} \cos{(\alpha)}}{\cos{(\alpha)}} = 2 \sin{A} = \dfrac{BF_2}{BF_1}. \]Finally, we end this by proving
\[ \triangle P'F_1B \sim \triangle D_RF_2B \]which directly establishes this Section's Claim.

Indeed, we know that $\angle BP'F_1 = \angle BD_RF_2$ by cyclicity and $\angle BF_1P = \angle BF_2D_R = \angle A$.

Small Notes.

We are done. $\blacksquare$ $\blacksquare$ $\blacksquare$
Motivation: Transferring and Juggling Angles.

Solution 2, by @MeineMeinung.
This post has been edited 1 time. Last edited by alexiaslexia, Jul 14, 2021, 12:51 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anurag27826
93 posts
#15 • 1 Y
Y by GeoKing
@Geoking and me have a unique solution.
Let $F = BC \cap KM$. Note that $BPC \sim DOB$ so $$\frac{BC}{BP}=\frac{DB}{DO}$$Also note that $FBCM \sim ODEA$ so $$\frac{BF}{BC}=\frac{DO}{DE}$$So $$\frac{BF}{BP}=\frac{BF \cdot BC}{BC \cdot BP}=\frac{DO \cdot DB}{DE \cdot DO}=\frac{DB}{DE}$$and $\angle FBP= 180^\circ - \angle \frac{A}{2}= \angle BDE$. So, $FBP \sim BDE$. Similarly $FCQ \sim CED$. Note that by brocard $OFQP$ is an orthocentric system.So, $$\angle OPB + \angle OEB= \angle OPB+ \angle BPF=\angle OPF=180^\circ- \angle OQF=180^\circ-\angle CQF +\angle OQC=180^\circ-\angle EDC +\angle OQC=\angle OQC +\angle ODC$$
This post has been edited 1 time. Last edited by anurag27826, Apr 19, 2023, 6:06 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
huashiliao2020
1292 posts
#16 • 1 Y
Y by Rounak_iitr
I'm going to admit that I did indeed peek at a few major claims of some of the solutions above, because bashing length/angle chasing isn't very intuitive when you have an entire ESSAY on it. Here is a very long and detailed elementary solution. Is there an alternative short solution that you could provide me with? Thanks, because I really hate these types of problems in geometry (or FEs!) where you can derive and see all this sim triangle and Brocard's I even saw myself but I couldn't piece it together at the end unless I spent another few hours but i Have to go soon, so i did need to see how to finish

few words
This post has been edited 2 times. Last edited by huashiliao2020, Aug 30, 2023, 5:18 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cursed_tangent1434
657 posts
#17 • 3 Y
Y by MathLuis, GeoKing, Rounak_iitr
Solved with kingu who apparently hates Chinese sim triangle problems.


Claim : $\triangle PCO \sim \triangle BCD$ and $\triangle BQO \sim \triangle BEC$.
Proof : Initially notice that $\angle OCP = \angle DBC$, now observe that as $\triangle DOB \sim BCP$, then $\frac{BD}{BC} =\frac{BO}{CP}= \frac{CO}{CP}$ implying the desired similarity. $\triangle BQO \sim \triangle BEC$ follows analogously.

Now notice that
\[\angle OPB - \angle ODC = \angle BPC - \angle OPC - \angle ODC = \angle BOD - \angle DCB - \angle ODC = \angle OBC\]and analogously, $\angle OQC - \angle OEB = \angle OCB$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EthanWYX2009
872 posts
#18 • 1 Y
Y by Rounak_iitr
As far as I know every China MO Geo can be bashed out
https://cdn.aops.com/images/4/1/5/415cd108e65214c62c036a480ff20b4e4763da15.jpg
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
L13832
268 posts
#19
Y by
This problem was really cool where i ended up angle chasing for 3 pages, in the end it was all simplified to $\triangle BOD\sim \triangle CPB$ and $\triangle BEC\sim \triangle QOB$, main motivation was just construction of reflection of different points as the figure was sorta symmetric (which is always a good thing) and simplifying the angle condition of the problem to match the similarity conditionsThe problem didn't use anything out of the blue, just plain old angle chasing(which felt like bash).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joshualiu315
2534 posts
#20
Y by
this was a brutal problem...


It suffices to show that

\[\angle OPB - \angle OQC = \angle ODC - \angle OEB.\]
We start by proving some preliminary facts. Notice that

\[\angle BCP = \angle BAK = \angle ABO = \angle DBO,\]
and

\[\angle CBP = \angle CAM = \angle BAM = \angle BDO.\]
Therefore, $\triangle BCP \sim \triangle BDO$, which gives us

\[\frac{BO}{BD} = \frac{CO}{BD} = \frac{CP}{CB} \implies \frac{CO}{CP} = \frac{BD}{BC}.\]
Also, some angle chasing yields

\[\angle CBD = \angle ABC = \angle AKC = \angle OCP.\]
Hence, by SAS similarity, we have $\triangle OCP \sim \triangle DBC$. Similarly, we have $\triangle OBQ \sim ECB$.

It is easy to see that $\angle OBM = \angle OCM$ and $\angle ODB = \angle OEA$. Finally, we angle chase:

\begin{align*}
\angle OPB - \angle OQC &= (\angle OPB + \angle OBP) - (\angle OQC + \angle OCQ) \\
&= \angle COQ - \angle BOP \\
&= \angle COP - \angle BOQ \\
&= \angle BDC - \angle CEB \\
&= (\angle BOC - \angle ODB) - (\angle CEB - \angle OEA) = \angle ODC - \angle OEB,
\end{align*}
as desired. $\blacksquare$
This post has been edited 1 time. Last edited by joshualiu315, Mar 15, 2025, 12:43 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
zuat.e
73 posts
#21
Y by
For convenience, let $\measuredangle MAC=\alpha/2=\measuredangle BAM$ and $\measuredangle OAM=\beta$.
Claim 1:
$\triangle BOD\sim \triangle CPB$
Proof: Just note that $\measuredangle BDO=\alpha/2=\measuredangle PBC$ and $\measuredangle OBD=\measuredangle BAO=\alpha/2-\beta=\measuredangle BCP$

Claim 2:
$\triangle BCD\sim CPO$
Proof: Observe $\measuredangle OCP=90º-\alpha/2-\beta=\measuredangle CBD$ and $\frac{OC}{CP}=\frac{OB}{CP}=\frac{BD}{BC}$, as desired.

We can get $\triangle OEC\sim \triangle QCB$ yielding $\triangle BCE\sim \triangle QBO$ in a similar manner and it remains pure angle chasing: if $\measuredangle CPO=y=\measuredangle DCB$ and $\measuredangle BEO=x$, we get $\measuredangle OPB=180º-\alpha+\beta-y$, $\measuredangle CQO=90º+x-\alpha$ and $\measuredangle ODC=90º+\beta-y$, hence $\measuredangle BEO+\measuredangle OPB=180º-\alpha + \beta+x-y=\measuredangle ODB+\measuredangle CQO$. The conclusion follows.
Z K Y
N Quick Reply
G
H
=
a